poj2417 Discrete Logging BSGS裸题
Posted acjiumeng
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj2417 Discrete Logging BSGS裸题相关的知识,希望对你有一定的参考价值。
给a^x == b (mod c)求满足的最小正整数x,
用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;,
我们先枚举j求出所有的ba^j%p,1<=j<m复杂度O(sqrt(c)),然后枚举1<=i<=m,求出a^(im)在ba^j找满足条件的答案,最后的答案就是第一个满足条件的i*m-j,复杂度O(sqrt(c))
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0)
using namespace std;
const double eps=1e-6;
const int N=1000000+10,maxn=5000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
map<ll,ll>ma;
inline ll quick(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1)ans=ans*a%p;
a=a*a%p;b>>=1;
}
return ans;
}
int main()
{
ll p,a,b;
while(~scanf("%lld%lld%lld",&p,&a,&b))
{
if(a%p==0)
{
puts("no solution");
continue;
}
ma.clear();
ll m=ceil(sqrt(p));
ll now=b%p;
ma[now]=0;
for(int i=1;i<=m;i++)
{
now=(now*a)%p;
ma[now]=i;
}
ll ans=-1,t=quick(a,m,p);now=1;
for(int i=1;i<=m;i++)
{
now=now*t%p;
if(ma[now])
{
ans=i*m-ma[now];
break;
}
}
if(ans!=-1)printf("%lld
",(ans%p+p)%p);
else puts("no solution");
}
return 0;
}
/********************
********************/
以上是关于poj2417 Discrete Logging BSGS裸题的主要内容,如果未能解决你的问题,请参考以下文章
Discrete Logging POJ - 2417(BSGS)
POJ-2417-Discrete Logging(BSGS)
[POJ2417]Discrete Logging(指数级同余方程)