04-树5 Root of AVL Tree (25 分)
Posted wanghao-boke
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了04-树5 Root of AVL Tree (25 分)相关的知识,希望对你有一定的参考价值。
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
#include<cstdio> #include<algorithm> using namespace std; struct Node { int v; int height; Node *lchild, *rchild; }*root; void Insert(Node* &root,int v); Node* NewNode(int v); void updateHeight(Node *root); int getHeight(Node* root); int getBalanceFactor(Node* root); Node* R(Node* &root); Node* L(Node* &root); int main() { int n; int v; scanf("%d",&n); for (int i = 0; i < n; i++) { scanf("%d",&v); Insert(root,v); } printf("%d",root->v); return 0; } void Insert(Node* &root, int v) { if (NULL == root) { root = NewNode(v); return ; } if (root->v > v) { Insert(root->lchild,v); updateHeight(root); if (2 == getBalanceFactor(root)) { if (1 == getBalanceFactor(root->lchild)) { R(root); } else if(-1 == getBalanceFactor(root->lchild)) { L(root->lchild); R(root); } } } else { Insert(root->rchild,v); updateHeight(root); if (-2 == getBalanceFactor(root)) { if (-1 == getBalanceFactor(root->rchild)) { L(root); } else if(1 == getBalanceFactor(root->rchild)) { R(root->rchild); L(root); } } } } Node* NewNode(int v) { Node* node = new Node; node->lchild = node->rchild = NULL; node->v = v; node->height = 1; return node; } void updateHeight(Node *root) { root->height = max(getHeight(root->lchild),getHeight(root->rchild)) + 1; } int getHeight(Node* root) { if (NULL == root) { return 0; } else { return root->height; } } int getBalanceFactor(Node* root) { return getHeight(root->lchild) - getHeight(root->rchild); } Node* R(Node* &root) { Node *tmp = root->lchild; root->lchild = tmp->rchild; tmp->rchild = root; updateHeight(root); updateHeight(tmp); root = tmp; } Node* L(Node* &root) { Node *tmp = root->rchild; root->rchild = tmp->lchild; tmp->lchild = root; updateHeight(root); updateHeight(tmp); root = tmp; }
以上是关于04-树5 Root of AVL Tree (25 分)的主要内容,如果未能解决你的问题,请参考以下文章