FFT
Posted cbdsopa的博客
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FFT相关的知识,希望对你有一定的参考价值。
建议全文背诵
3->2优化
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define file(a) freopen(#a".in","r",stdin),freopen(#a".out","w",stdout)
#define endless() fclose(stdin),fclose(stdout)
#define ReadOnly(a) freopen(#a,"r",stdin)
inline int read()
int s=0,f=1;char ch=getchar();
while(ch<\'0\'||\'9\'<ch) if(ch==\'-\') f=-1;ch=getchar();
while(\'0\'<=ch&&ch<=\'9\') s=s*10+(ch^48);ch=getchar();
return s*f;
const int N=1e6+5e5+3;
const double pi=acos(-1);
struct Complex
double x,y;
Complex(double _x=0,double _y=0)
x=_x;y=_y;
inline friend Complex operator+(Complex a,Complex b)
return Complex(a.x+b.x,a.y+b.y);
inline friend Complex operator-(Complex a,Complex b)
return Complex(a.x-b.x,a.y-b.y);
inline friend Complex operator*(Complex a,Complex b)
return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
F[N<<1];
int rev[N<<1];int n,m;
inline void get_rev()
for(int i=0;i<n;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)?n>>1:0);
inline void FFT(Complex *f,bool flag)
for(int i=0;i<n;++i)
if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int p=2;p<=n;p<<=1)//枚举区间长度
int len=p>>1;//获取分治长度
Complex w1n(cos(2*pi/p),sin(2*pi/p) );
if(!flag) w1n.y*=-1;
for(int k=0;k<n;k+=p)//枚举初始化位置
Complex wxn(1,0);
for(int l=k;l<k+len;++l)//枚举detail
Complex tmp=wxn*f[len+l];
f[len+l]=f[l]-tmp;
f[l]=f[l]+tmp;
wxn=wxn*w1n;//获取下一个单位根
int main(void)
n=read();m=read();
for(int i=0;i<=n;++i)
F[i].x=read();
for(int i=0;i<=m;++i)
F[i].y=read();
for(m+=n,n=1;n<=m;n<<=1);//补足2的幂次
get_rev();//二进制翻转
FFT(F,1);//DFT
for(int i=0;i<n;++i) F[i]=F[i]*F[i];
FFT(F,0);//IDFT
for(int i=0;i<=m;++i)
printf("%d ",(int)(F[i].y/n/2+0.49) );
return 0;
原版,更加灵活
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define file(a) freopen(#a".in","r",stdin),freopen(#a".out","w",stdout)
#define endless() fclose(stdin),fclose(stdout)
#define ReadOnly(a) freopen(#a,"r",stdin)
inline int read()
int s=0,f=1;char ch=getchar();
while(ch<\'0\'||\'9\'<ch) if(ch==\'-\') f=-1;ch=getchar();
while(\'0\'<=ch&&ch<=\'9\') s=s*10+(ch^48);ch=getchar();
return s*f;
const int N=1e6+5e5+3;
const double pi=acos(-1);
struct Complex
double x,y;
Complex(double _x=0,double _y=0)
x=_x;y=_y;
inline friend Complex operator+(Complex a,Complex b)
return Complex(a.x+b.x,a.y+b.y);
inline friend Complex operator-(Complex a,Complex b)
return Complex(a.x-b.x,a.y-b.y);
inline friend Complex operator*(Complex a,Complex b)
return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
F[N<<1],P[N<<1];
int rev[N<<1];int n,m;
inline void get_rev()
for(int i=0;i<n;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)?n>>1:0);
inline void FFT(Complex *f,bool flag)
for(int i=0;i<n;++i)
if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int p=2;p<=n;p<<=1)//枚举区间长度
int len=p>>1;//获取分治长度
Complex w1n(cos(2*pi/p),sin(2*pi/p) );
if(!flag) w1n.y*=-1;
for(int k=0;k<n;k+=p)//枚举初始化位置
Complex wxn(1,0);
for(int l=k;l<k+len;++l)//枚举detail
Complex tmp=wxn*f[len+l];
f[len+l]=f[l]-tmp;
f[l]=f[l]+tmp;
wxn=wxn*w1n;//获取下一个单位根
int main(void)
n=read();m=read();
for(int i=0;i<=n;++i)
F[i].x=read();
for(int i=0;i<=m;++i)
P[i].x=read();
for(m+=n,n=1;n<=m;n<<=1);//补足2的幂次
get_rev();//二进制翻转
FFT(F,1);FFT(P,1);//DFT
for(int i=0;i<n;++i) F[i]=F[i]*P[i];
FFT(F,0);//IDFT
for(int i=0;i<=m;++i)
printf("%d ",(int)(F[i].x/n+0.49) );
return 0;
以上是关于FFT的主要内容,如果未能解决你的问题,请参考以下文章