神经网络:卷积神经网络(CNN)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络:卷积神经网络(CNN)相关的知识,希望对你有一定的参考价值。
参考技术A 神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。
神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。
神经网络有三个要素: 拓扑结构、连接方式、学习规则
神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。
神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题
神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。
根据层次之间的连接方式,分为:
1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络
2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络
根据连接的范围,分为:
1)全连接神经网络:每个单元和相邻层上的所有单元相连
2)局部连接网络:每个单元只和相邻层上的部分单元相连
神经网络的学习
根据学习方法分:
感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练
认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。
根据学习时间分:
离线网络:学习过程和使用过程是独立的
在线网络:学习过程和使用过程是同时进行的
根据学习规则分:
相关学习网络:根据连接间的激活水平改变权系数
纠错学习网络:根据输出单元的外部反馈改变权系数
自组织学习网络:对输入进行自适应地学习
摘自《数学之美》对人工神经网络的通俗理解:
神经网络种类很多,常用的有如下四种:
1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成
2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题
3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接
4)ART网络:自组织网络
深度神经网络:
Convolutional Neural Networks(CNN)卷积神经网络
Recurrent neural Network(RNN)循环神经网络
Deep Belief Networks(DBN)深度信念网络
深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。
深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。
Machine Learning vs. Deep Learning
神经网络(主要是感知器)经常用于 分类
神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。
神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。
神经网络特别适用于下列情况的分类问题:
1) 数据量比较小,缺少足够的样本建立模型
2) 数据的结构难以用传统的统计方法来描述
3) 分类模型难以表示为传统的统计模型
缺点:
1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。
2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。
3) 可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。
优点:
1) 分类的准确度高
2)并行分布处理能力强
3)分布存储及学习能力高
4)对噪音数据有很强的鲁棒性和容错能力
最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。
定义网络拓扑
在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。
对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。
离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。
一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。
隐藏层单元数设多少个“最好” ,没有明确的规则。
网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。
后向传播算法学习过程:
迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。
每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。
这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。
算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。
后向传播算法分为如下几步:
1) 初始化权
网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。
每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。
2) 向前传播输入
对于每一个样本X,重复下面两步:
向前传播输入,向后传播误差
计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=
3) 向后传播误差
计算各层每个单元的误差。
输出层单元j,误差:
Oj是单元j的实际输出,而Tj是j的真正输出。
隐藏层单元j,误差:
wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差
更新 权 和 偏差 ,以反映传播的误差。
权由下式更新:
其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。
偏置由下式更新:
其中,△θj是偏置θj的改变。
Example
人类视觉原理:
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。
CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:
这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。
CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。
降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。
但是在CNN里,可以大大减少参数个数,基于以下两个假设:
1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征
2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像
基于以上两个假设,就能把第一层网络结构简化
用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。
卷积运算的定义如下图所示:
如上图所示,一个5x5的图像,用一个3x3的 卷积核 :
1 0 1
0 1 0
1 0 1
来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。
这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。
在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:
池化 的过程如下图所示:
可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。
之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。
即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。
在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。
LeNet网络结构:
注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。
卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法
第一阶段,向前传播阶段:
a)从样本集中取一个样本(X,Yp),将X输入网络;
b)计算相应的实际输出Op
第二阶段,向后传播阶段
a)计算实际输出Op与相应的理想输出Yp的差;
b)按极小化误差的方法反向传播调整权矩阵。
以上是关于神经网络:卷积神经网络(CNN)的主要内容,如果未能解决你的问题,请参考以下文章