[Python]jieba切词 添加字典 去除停用词单字 python 2020.2.10

Posted 雾霾王者

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Python]jieba切词 添加字典 去除停用词单字 python 2020.2.10相关的知识,希望对你有一定的参考价值。

源码如下:

 1 import jieba
 2 import io
 3 import re
 4 
 5 #jieba.load_userdict("E:/xinxi2.txt")
 6 patton=re.compile(r\'..\')
 7 
 8 #添加字典
 9 def add_dict():
10     f=open("E:/xinxi2.txt","r+",encoding="utf-8")  #百度爬取的字典
11     for line in f:
12         jieba.suggest_freq(line.rstrip("\\n"), True)
13     f.close()
14 
15 #对句子进行分词
16 def cut():
17     number=0
18     f=open("E:/luntan.txt","r+",encoding="utf-8")   #要处理的内容,所爬信息,CSDN论坛标题
19     for line in f:
20         line=seg_sentence(line.rstrip("\\n"))
21         seg_list=jieba.cut(line)
22         for i in seg_list:
23             print(i) #打印词汇内容
24             m=patton.findall(i)
25             #print(len(m)) #打印字符长度
26             if len(m)!=0:
27                 write(i.strip()+" ")
28         line=line.rstrip().lstrip()
29         print(len(line))#打印句子长度
30         if len(line)>1:
31             write("\\n")
32         number+=1
33         print("已处理",number,"")
34 
35 #分词后写入
36 def write(contents):
37     f=open("E://luntan_cut2.txt","a+",encoding="utf-8") #要写入的文件
38     f.write(contents)
39     #print("写入成功!")
40     f.close()
41 
42 #创建停用词
43 def stopwordslist(filepath):
44     stopwords = [line.strip() for line in open(filepath, \'r\', encoding=\'utf-8\').readlines()]
45     return stopwords
46 
47 # 对句子进行去除停用词
48 def seg_sentence(sentence):
49     sentence_seged = jieba.cut(sentence.strip())
50     stopwords = stopwordslist(\'E://stop.txt\')  # 这里加载停用词的路径
51     outstr = \'\'
52     for word in sentence_seged:
53         if word not in stopwords:
54             if word != \'\\t\':
55                 outstr += word
56                 #outstr += " "
57     return outstr
58 
59 #循环去除、无用函数
60 def cut_all():
61     inputs = open(\'E://luntan_cut.txt\', \'r\', encoding=\'utf-8\')
62     outputs = open(\'E//luntan_stop.txt\', \'a\')
63     for line in inputs:
64         line_seg = seg_sentence(line)  # 这里的返回值是字符串
65         outputs.write(line_seg + \'\\n\')
66     outputs.close()
67     inputs.close()
68 
69 if __name__=="__main__":
70     add_dict()
71     cut()

luntan.txt的来源,地址:https://www.cnblogs.com/zlc364624/p/12285055.html

其中停用词自行百度下载,或者自己创建一个txt文件夹,自行添加词汇换行符隔开。

百度爬取的字典在前几期博客中可以找到,地址:https://www.cnblogs.com/zlc364624/p/12289008.html

效果如下:

 

 

import jieba
import io
import re

#jieba.load_userdict("E:/xinxi2.txt")
patton=re.compile(r\'..\')

#添加字典
def add_dict():
f=open("E:/xinxi2.txt","r+",encoding="utf-8") #百度爬取的字典
for line in f:
jieba.suggest_freq(line.rstrip("\\n"), True)
f.close()

#对句子进行分词
def cut():
number=0
f=open("E:/luntan.txt","r+",encoding="utf-8") #要处理的内容,所爬信息,CSDN论坛标题
for line in f:
line=seg_sentence(line.rstrip("\\n"))
seg_list=jieba.cut(line)
for i in seg_list:
print(i) #打印词汇内容
m=patton.findall(i)
#print(len(m)) #打印字符长度
if len(m)!=0:
write(i.strip()+" ")
line=line.rstrip().lstrip()
print(len(line))#打印句子长度
if len(line)>1:
write("\\n")
number+=1
print("已处理",number,"")

#分词后写入
def write(contents):
f=open("E://luntan_cut2.txt","a+",encoding="utf-8") #要写入的文件
f.write(contents)
#print("写入成功!")
f.close()

#创建停用词
def stopwordslist(filepath):
stopwords = [line.strip() for line in open(filepath, \'r\', encoding=\'utf-8\').readlines()]
return stopwords

# 对句子进行去除停用词
def seg_sentence(sentence):
sentence_seged = jieba.cut(sentence.strip())
stopwords = stopwordslist(\'E://stop.txt\') # 这里加载停用词的路径
outstr = \'\'
for word in sentence_seged:
if word not in stopwords:
if word != \'\\t\':
outstr += word
#outstr += " "
return outstr

#循环去除、无用函数
def cut_all():
inputs = open(\'E://luntan_cut.txt\', \'r\', encoding=\'utf-8\')
outputs = open(\'E//luntan_stop.txt\', \'a\')
for line in inputs:
line_seg = seg_sentence(line) # 这里的返回值是字符串
outputs.write(line_seg + \'\\n\')
outputs.close()
inputs.close()

if __name__=="__main__":
add_dict()
cut()

以上是关于[Python]jieba切词 添加字典 去除停用词单字 python 2020.2.10的主要内容,如果未能解决你的问题,请参考以下文章

python怎么去除停用词的

用python对单一微博文档进行分词——jieba分词(加保留词和停用词)

使用jieba对新闻标题进行切词,然后使用word2vec训练词向量及相似词计算的一个小例子

中文文本聚类(切词以及Kmeans聚类)

python使用jieba实现中文文档分词和去停用词

中文分词-jieba#人工智能