LDA(线性判别分析)python实现

Posted 有点锋芒

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LDA(线性判别分析)python实现相关的知识,希望对你有一定的参考价值。

原理

求解最佳投影方向,使得同类投影点尽可能的进,异类投影点尽可能的远
同类投影点距离用同类样本协方差矩阵表示

[omega^T Sigma_i omega quad {第i类样本协方差} ]

异类投影点距离

[||omega^Tmu_0 - omega^Tmu_1||_2^2 ]

(mu_i , {第i类样本均值})
优化函数

[J(omega) = frac{||omega^Tmu_0 - omega^T mu_1||_2^2}{omega^T (Sigma_0 - Sigma_1) omega} ]

求上述函数极大值,解出(omega)

定义类间、类内散度矩阵

1.类间散度矩阵

[S_w = Sigma_0 + Sigma_1 = sum_{x in X0}(x - omega)(x - omega)^T + sum_{x in X1}(x - omega)(x - omega)^T ]

2.类内散度矩阵

[S_b = (mu_0 - mu_1)(mu_0 - mu_1)^T ]

[J(omega) = frac{omega^T S_b omega}{omega^T S_w omega} ]

利用拉格朗日乘数法,可得

[omega = S_w^{-1}(mu_0 - mu_1) ]

python程序

import numpy as np 
import matplotlib.pyplot as plt 
M = 2 #属性个数
N = 50#二分类。每类样本N个
#随机生成两个属性的N个第一类样本
feature11 = np.random.randint(0, 7, size = N)
feature12 = np.random.randint(0, 7, size= N)
temp_X1 = np.row_stack((feature11, feature12))
X1 = np.mat(temp_X1)
#随机生成两个属性的N个第二类样本
feature21 = np.random.randint(5,11, size= N)
feature22 = np.random.randint(7, 14, size= N)
temp_X2 = np.row_stack((feature21, feature22))
X2 = np.mat(temp_X2)
#求投影向量omega
mu1 = np.mat(np.zeros((2,1)))
mu2 = np.mat(np.zeros((2,1)))
X_1t = np.array(X1)
X_2t = np.array(X2)
for i in range(M):
    mu1[i, 0] = sum([j for j in X_1t[i,:]])/N
for i in range(M):
    mu2[i, 0] = sum([j for j in X_2t[i,:]])/N
#print(mu1, mu2)
s_w1 = np.mat(np.zeros(M))
s_w2 = np.mat(np.zeros(M))
for i in range(N):
    s_w1 = s_w1 + (X1[:, i] - mu1)*(X1[:, i] - mu1).T 
for i in range(N):
    s_w2 = s_w2 + (X2[:, i] - mu2)*(X2[:, i] - mu2).T 
s_w = s_w1 + s_w2
Omega = np.linalg.pinv(s_w)*(mu1 - mu2)
#print(Omega)
#画出散点图、投影面
fig = plt.figure(1)
plt.scatter(feature11, feature12, marker=‘+‘)
plt.scatter(feature21, feature22, marker=‘*‘)
xx_1 = np.linspace(0,10,num=50)
yy_1 = Omega[1,0]/Omega[0,0]*xx_1
plt.plot(xx_1,yy_1,color=‘r‘)
plt.show()

效果

技术图片

参考资料

《机器学习》    周志华老师

以上是关于LDA(线性判别分析)python实现的主要内容,如果未能解决你的问题,请参考以下文章

线性判别分析之python代码分析

LDA(线性判别分析)的正确实现是啥?

Matlab基于线性判别法LDA实现多分类预测(Excel可直接替换数据)

Matlab基于线性判别法LDA实现多分类预测(Excel可直接替换数据)

线性判别分析(LDA)

从零开始实现线性判别分析(LDA)算法(二类情形)