python几个重要的函数(lambda,filter,reduce,map,zip)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python几个重要的函数(lambda,filter,reduce,map,zip)相关的知识,希望对你有一定的参考价值。

一、匿名函数lambda

lambda argument1,argument2,...argumentN :expression using arguments

 

1、lambda是一个表达式,而不是一个语句。

因为这一点,lambda可以出现在python语法不允许def出现的地方---例如,在一个列表常量中或者函数调用的参数中,此外,作为一个表达式,lambda返回一个值一个值(一个新的函数),可以选择性地值给一个变量名。相反,def语句总是得在头部将一个新的函数赋值给一个变量名,而不是将这个函数作为结果返回。

2、lambda 的主体是一个单个的表达式,而不是一个代码块。

lambda是一个为编写简单的函数设计的,而def用来处理更大的任务。

Example:

>>>f=lambda x,y,z: x+y+z

>>>f(2,3,4)

9

>>>x=(lambda a=”fee”,b=”fie”,c=”foe”: a+b+c)

>>>x(“wee”)

‘weefiefoe’

 

通常用lambda来编写跳转表,如下:

>>>L = [lambda x: x**2,

  lambda x: x**3,

  lambda x: x**4 ]

>>>for f in L:

print(f(2))

4

8

16

>>>print(L[0](3))

9

 

嵌套的lambda,如下:

>>>def action(x):

return (lambda y: x+y)

>>>act=action(99)

>>>act(2)

101

>>>action = (lambda x: (lambda y: x+y))

>>>act = action(99)

>>>act(2)

101

>>>((lambda x: (lambda y: x+y))(99))(2)

101

 

二、map函数

map(function, sequence[, sequence, ...]) -> iterator

 

通过定义可以看到,这个函数的第一个参数是一个函数,剩下的参数是一个或多个序列,返回值是一个迭代器。

function可以理解为是一个一对一或多对一函数,map的作用是以参数序列中的每一个元素调用function函数,返回包含每次function函数返回值的迭代器。

返回可迭代对象,需要list调用来显示所有结果。

>>> list(map(lambda x:x+2, [1, 2, 3]))

[3, 4, 5]

>>>list(map(pow,[1,2,3],[2,3,4]))

[1,8,81]

 

三、filter函数

filter函数会对指定序列执行过滤操作。

 

filter函数的定义:

filter(function or None, sequence) ->iterator

filter函数会对序列参数sequence中的每个元素调用function函数,最后返回的结果包含调用结果为True的元素。

返回可迭代对象,需要list调用来显示所有结果。

>>>list(filter((lambda x: x>0),range(-5,5)))

[1,2,3,4]

>>>list(filter(None,range(-5,5)))

[-5, -4, -3, -2, -1, 1, 2, 3, 4]

若function为None,则会返回包含非空元素的迭代器。

 

四、reduce函数

reduce函数,reduce函数会对参数序列中元素进行累积。

 

reduce函数的定义:

functools.reduce(function, iterable[, initializer])  #python3中reduce是在functools模块中

function参数是一个有两个参数的函数,reduce依次从iterable中取一个元素,和上一次调用function的结果做参数再次调用function。

第一次调用function时,如果提供initial参数,会以iterable中的第一个元素和initial作为参数调用function,否则会以iterable中的前两个元素做参数调用function。

等价于:

def reduce(function, iterable, initializer=None):

it = iter(iterable)

    if initializer is None:

        value = next(it)

    else:

        value = initializer

    for element in it:

        value = function(value, element)

return value

 

>>> functools.reduce(lambda x, y:x+y, [1,2,3,4])

10

>>> functools.reduce(lambda x, y:x+y, [1,2,3,4], 10)

20

>>> functools.reduce(lambda x, y:x*y, [1,2,3,4])

24

 

如果没有initial参数,这么算:(((1+2)+3)+4)

如果有initial参数,这么算: ((((10+1)+2)+3)+4)

 

注意:function函数不能为None,function必须是有2个参数的函数。

 

五、zip函数

其中sorted()和zip()返回一个序列(列表)对象,reversed()、enumerate()返回一个迭代器(类似序列)

定义:zip([seql, ...])接受一系列可迭代对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。

>>> list(zip([1,23,3],[213,45,2]))  #两个列表长度一致

[(1, 213), (23, 45), (3, 2)]

>>> list(zip([1,23,3],[213,45,2,34,54]))  #两个列表长度不一致,以短的为准

[(1, 213), (23, 45), (3, 2)]

 

 

zip一些应用:

>>> [ [ i for i in range(3*n+1,3*n+4) ] for n in range(3) ]

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

 

1、二维矩阵变换(矩阵的行列互换)

>>>a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>>[ [row[col] for row in a] for col in range(len(a[0]))]

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

>>>list(zip(*a))

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

>>> map(list,zip(*a))

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

 

2、*操作符与zip函数配合可以实现与zip相反的功能,即将合并的序列拆成多个tuple

>>>>x=[1,2,3],y=[‘a‘,‘b‘,‘c‘]

>>>>zip(*zip(x,y))

[(1,2,3),(‘a‘,‘b‘,‘c‘)]

 

3、使用zip合并相邻的列表项

>>> a = [1, 2, 3, 4, 5, 6]

>>> list(zip(*([iter(a)] * 2)))

[(1, 2), (3, 4), (5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> list(group_adjacent(a, 3))

[(1, 2, 3), (4, 5, 6)]

>>> list(group_adjacent(a, 2))

[(1, 2), (3, 4), (5, 6)]

>>> list(group_adjacent(a, 1))

[(1,), (2,), (3,), (4,), (5,), (6,)]

 

>>> list(zip(a[::2], a[1::2]))

[(1, 2), (3, 4), (5, 6)]

 

>>> list(zip(a[::3], a[1::3], a[2::3]))

[(1, 2, 3), (4, 5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> list(group_adjacent(a, 3))

[(1, 2, 3), (4, 5, 6)]

>>> list(group_adjacent(a, 2))

[(1, 2), (3, 4), (5, 6)]

>>> list(group_adjacent(a, 1))

[(1,), (2,), (3,), (4,), (5,), (6,)]

 

4、使用zip和iterators生成滑动窗口 (n -grams)

>>> from itertools import islice

>>> def n_grams(a, n):

z = (islice(a, i, None) for i in range(n))

return zip(*z)

>>> a = [1, 2, 3, 4, 5, 6]

>>> list(n_grams(a, 3))

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> list(n_grams(a, 2))

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>>list(n_grams(a, 4))

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

 

5、使用zip反转字典

>>> m = {‘a‘: 1, ‘b‘: 2, ‘c‘: 3, ‘d‘: 4}

>>> list(m.items())

[(‘a‘, 1), (‘c‘, 3), (‘b‘, 2), (‘d‘, 4)]

>>> list(zip(m.values(), m.keys()))

[(1, ‘a‘), (3, ‘c‘), (2, ‘b‘), (4, ‘d‘)]

>>>dict(zip(m.values(), m.keys()))

{1: ‘a‘, 2: ‘b‘, 3: ‘c‘, 4: ‘d‘}

以上是关于python几个重要的函数(lambda,filter,reduce,map,zip)的主要内容,如果未能解决你的问题,请参考以下文章

Python几个高阶函数

Python之路day13-内置函数_lambda_闭包

Python的lambda表达式

Lambda与函数式接口

Python 几个重要的内置函数

21.lambda表达式+重要的bif(filtermap)