标准遗传算法(二进制编码 python实现)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了标准遗传算法(二进制编码 python实现)相关的知识,希望对你有一定的参考价值。
代码地址:https://github.com/guojun007/binary_sga
种群初始化:
binary_sga/population_init/population_init.py
#种群初始化函数 def population_init(population, N, V, nbits): #自变量个数V并没有用到 del population[:] for i in xrange(N): tempIndividual=[] for j in nbits: tempVal=[] for k in xrange(j): tempVal.append(random.randint(0, 1)) tempIndividual.append(tempVal) population.append(tempIndividual)
选择操作:(轮盘赌选择)
binary_sga/selection/selection.py
#!/usr/bin/env python #encoding:UTF-8 import copy import random #轮盘赌选择法 def selection(population, xbin): s=sum(xbin) temp=[k*1.0/s for k in xbin] temp2=[] s2=0 for k in temp: s2=s2+k temp2.append(s2) temp3=[] for _ in xrange(len(population)): r=random.random() for i in xrange(len(temp2)): if r<=temp2[i]: temp3.append(i) break temp4=[] temp5=[] for i in temp3: temp4.append(copy.deepcopy(population[i])) temp5.append(xbin[i]) population[:]=temp4 xbin[:]=temp5
交叉操作:(单点交叉)
binary_sga/crossover/crossover.py
#二进制编码,单点交叉 def crossover(population, alfa, nbits): for i in xrange(len(population), 2): for j in xrange(len(nbits)): r=random.random() if r<alfa: p=random.randint(1, nbits[j]-1) population[i][j][p:], population[i+1][j][p:]=population[i+1][j][p:], population[i][j][p:]
变异操作:
binary_sga/mutation/mutation.py
def mutation(population, belta, nbits): for i in xrange(len(population)): for j in xrange(len(nbits)): for k in xrange(nbits[j]): r=random.random() if r<belta: population[i][j][k]^=1
二进制个体解码操作:
binary_sga/decode/decode.py
#种群个体解码 def decode(population, population_real, minBinVal, maxBinVal, nbits): del population_real[:] def iner(valList): L=len(valList) s=0 for i in valList: s=s+i*(2**(L-1)) L=L-1 return s for i in population: temp=[] for j in i: temp.append(iner(j)) for j in xrange(len(temp)): temp[j]=temp[j]*(maxBinVal[j]-minBinVal[j])*1.0/(2**(nbits[j])-1)+minBinVal[j] population_real.append(temp)
测试函数部分:
binary_sga/function/object_fun.py
#对偶问题, 转化为求最大值 #二维 Rastrigin测试函数 def object_fun(p): import math x=p[0] y=p[1] object_value=20.0+x**2+y**2-10.0*(math.cos(2*math.pi*x)+math.cos(2*math.pi*y)) return 100.0-object_value """ #求最大值,无需转化 #二维 Schaffer测试函数 def object_fun(p): import math x=p[0] y=p[1] object_value =0.5-((math.sin( math.sqrt(x**2+y**2) ))**2-0.5)/(1+0.001*(x**2+y**2))**2 return object_value """
主函数部分:
binary_sga/sga.py
N=200 V=2 nbits=(17, 17) maxBinVal=(-5, -5) minBinVal=(5, 5) population=[] population_real=[] alfa=0.9 belta=0.05 #目标函数值列表 xbin=[] def per_run(): population_init(population, N, V, nbits) for i in xrange(200): decode(population, population_real, minBinVal, maxBinVal, nbits) eval_fun(population_real, xbin) selection(population, xbin) crossover(population, alfa, nbits) mutation(population, belta, nbits) decode(population, population_real, minBinVal, maxBinVal, nbits) eval_fun(population_real, xbin) return 100.0-max(xbin)
N为个体种群数。
V为自变量个数。
nbits 各个自变量二进制编码的长度。
maxBinVal 各个自变量 上限。
minBinVal 各个自变量 下限。
种群个体 二进制编码 列表 population。
种群个体 实数解码 列表 population_real。
alfa=0.9 交叉概率。
belta=0.05 变异概率。
以上是关于标准遗传算法(二进制编码 python实现)的主要内容,如果未能解决你的问题,请参考以下文章
基于遗传算法求解柔性作业车间调度问题代码实现(包括标准算例准换编码解码的详细讲述)