《Python数据可视化之matplotlib实践》 源码 第四篇 扩展 第十一章
Posted Hello_BeautifulWorld
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《Python数据可视化之matplotlib实践》 源码 第四篇 扩展 第十一章相关的知识,希望对你有一定的参考价值。
图 11.2
import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np plt.axes([0.1, 0.1, 0.8, 0.8], frameon=True, facecolor="y", aspect="equal") plt.plot(2+np.arange(3), [0, 1, 0]) plt.title("Line Chart") plt.text(2.25, 0.8, "FONT") plt.show()
==================================
图 11.3
import matplotlib.pyplot as plt import numpy as np plt.rcParams["lines.linewidth"]=8.0 plt.rcParams["lines.linestyle"]="--" plt.rcParams["font.family"]="serif" plt.rcParams["font.serif"]="New Century Schoolbook" ### plt.rcParams["font.style"]="normal" plt.rcParams["font.variant"]="small-caps" plt.rcParams["font.weight"]="black" plt.rcParams["font.size"]=12.0 plt.rcParams["text.color"]="blue" plt.axes([0.1, 0.1, 0.8, 0.8], frameon=True, facecolor="y", aspect="equal") plt.plot(2+np.arange(3), [0, 1, 0]) plt.title("Line Chart") plt.text(2.25, 0.8, "FONT") plt.show()
==================================
图 11.4
import matplotlib.pyplot as plt import numpy as np plt.axes([0.1, 0.1, 0.8, 0.8], frameon=True, facecolor="y", aspect="equal") plt.plot(2+np.arange(3), [0, 1, 0], linewidth=8.0, linestyle="--") plt.title("Line Chart", color="red", family="New Century Schoolbook", style="normal", variant="small-caps", weight="black", size=18) ### plt.text(2.25, 0.8, "FONT", color="blue", fontdict={"family":"New Century Schoolbook", "style":"normal", "variant":"small-caps", "weight":"black", "size":28}) ### plt.show()
==================================
图 11.5
import matplotlib.pyplot as plt fig=plt.figure() ax=fig.add_subplot(111) pi=[0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] families=["serif", "sans-serif", "fantasy", "monospace"] ax.text(-1, 1, "family", fontsize=18, horizontalalignment="center") for i, family in enumerate(families): ax.text(-1, pi[i], family, family=family, horizontalalignment="center") sizes=["xx-small", "x-small", "small", "medium", "large", "x-large", "xx-large"] ax.text(-0.5, 1, "size", fontsize=18, horizontalalignment="center") for i, size in enumerate(sizes): ax.text(-0.5, pi[i], size, size=size, horizontalalignment="center") styles=["normal", "italic", "oblique"] ax.text(0, 1, "style", fontsize=18, horizontalalignment="center") for i, style in enumerate(styles): ax.text(0, pi[i], style, family="sans-serif", style=style, horizontalalignment="center") variants=["normal", "small-caps"] ax.text(0.5, 1, "variant", fontsize=18, horizontalalignment="center") for i, variant in enumerate(variants): ax.text(0.5, pi[i], variant, family="serif", variant=variant, horizontalalignment="center") weights=["light", "normal", "semibold", "bold", "black"] ax.text(1, 1, "weight", fontsize=18, horizontalalignment="center") for i, weight in enumerate(weights): ax.text(1, pi[i], weight, weight=weight, horizontalalignment="center") ax.axis([-1.5, 1.5, 0.1, 1.1]) ax.set_xticks([]) ax.set_yticks([]) plt.show()
==================================
以上是关于《Python数据可视化之matplotlib实践》 源码 第四篇 扩展 第十一章的主要内容,如果未能解决你的问题,请参考以下文章
Python数据可视化之matplotlib实践 源码 第一篇 入门 第三章
Python数据可视化之matplotlib实践 源码 第一篇 入门 第三章