基于遗传优化GA的三目标优化仿真

Posted 51matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于遗传优化GA的三目标优化仿真相关的知识,希望对你有一定的参考价值。

1.算法仿真效果

matlab2022a仿真结果如下:

 

三个目标函数各自的收敛过程如下:

 

 

 

2.算法涉及理论知识概要

       遗传算法的原理

 

       遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

 

一、遗传算法的目的

        典型的遗传算法CGA(Canonical Genetic Algorithm)通常用于解决下面这一类的静态最优化问题:考虑对于一群长度为L的二进制编码bii12,…,n;有

 

bi0,1L (3-84)

 

给定目标函数f,有f(bi),并且

 

0

 

同时f(bi)f(bi+1)求满足下式

 

maxf(bi)|bi0,1L

 

bi。很明显,遗传算法是一种最优化方法,它通过进化和遗传机理,从给出的原始解群中,不断进化产生新的解,最后收敛到一个特定的串bi处,即求出最优解。

 

二、遗传算法的基本原理

        长度为Ln个二进制串bi(i12,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:

 

1.选择(Selection)

 

这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproduction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproduction)

 

2.交叉(Crossover)

 

这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。

 

3.变异(Mutation)

 

这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。

 

遗传算法的原理可以简要给出如下:

 

choose an intial population

 

determine the fitness of each individual

 

perform selection

 

repeat

 

perform crossover

 

perform mutation

 

determine the fitness of each individual

 

perform selection

 

until some stopping criterion applies

 

        这里所指的某种结束准则一般是指个体的适应度达到给定的阀值;或者个体的适应度的变化率为零。

 

三、遗传算法的步骤和意义

1.初始化

 

选择一个群体,即选择一个串或个体的集合bii=12...n。这个初始的群体也就是问题假设解的集合。一般取n30-160

 

通常以随机方法产生串或个体的集合bi,i12...n。问题的最优解将通过这些初始假设解进化而求出。

 

2.选择

 

根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

 

给出目标函数f,则f(bi)称为个体bi的适应度。以

 

为选中bi为下一代个体的次数。

 

显然.从式(386)可知:

 

(1)适应度较高的个体,繁殖下一代的数目较多。

 

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

 

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

 

3.交叉

 

对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

 

例如有个体

 

S1=100101

 

S2=010111

 

选择它们的左边3位进行交叉操作,则有

 

S1=010101

 

S2=100111

 

一般而言,交 婊显譖。取值为0.250.75

 

4.变异

 

根据生物遗传中基因变异的原理,以变异概率Pm对某些个体的某些位执行变异。在变异时,对执行变异的串的对应位求反,即把1变为0,把0变为1。变异概率Pm与生物变异极小的情况一致,所以,Pm的取值较小,一般取0.01-0.2

 

例如有个体S101011

 

对其的第14位置的基因进行变异,则有

 

S\'=001111

 

单靠变异不能在求解中得到好处。但是,它能保证算法过程不会产生无法进化的单一群体。因为在所有的个体一样时,交叉是无法产生新的个体的,这时只能靠变异产生新的个体。也就是说,变异增加了全局优化的特质。

 

3.MATLAB核心程序

 

%初始参数设置
M      = 5;
N      = 3;
%表示子任务Ti的任务量
Ci     = floor(1*rand(1,M)+10);
%表示通信任务Eij的任务量
Cij    = floor(1*rand(M,M)+10);
%节点完成任务的平均速度
v      = 25; 
%节点间单位通信量所需要的时间
fai    = 0.1;  
%节点PEi上的最大任务吞吐量
ECTLj  = floor(5*ones(N,1)+35);
%客户允许完成任务的最长时间
L0     = 100;
lemda1 = 0.2;
lemda2 = 0.1;
%下面的变量是通过优化得到的
%为0-1变量,取1时,表示任务Ti分到了节点PEj上
%初始设置,通过随机方式产生
xij = zeros(M,N);
 
for i = 1:M
    tmps  = rand(1,N);
    [V,I] = max(tmps);
    xij(i,I) = 1; 
end
%为0-1变量,取1时,表示任务Ti和Tj分到了同一个节点上
rij = zeros(M,M);
for i = 1:M
    t1   = xij(i,:);
    ind1 = find(t1 == 1); 
    for j = 1:M
        t2   = xij(j,:);
        ind2 = find(t2 == 1); 
        if ind1 == ind2
           rij(i,j) = 1; 
        end
    end
end

 

  

 

基于NSGAII多目标遗传优化的WSN无线传感器网络最优覆盖率matlab仿真

目录

一、理论基础

二、MATLAB仿真程序

三、仿真结果


一、理论基础

        然后这里标准的多目标遗传算法应用最多的是NSGAII算法,然后我们这里将基于上述的改进策略,去改进NSGAII算法,从而得到一种新的NSGAII算法。

        假设有N个优化目标:

 多目标的优化问题

以上是关于基于遗传优化GA的三目标优化仿真的主要内容,如果未能解决你的问题,请参考以下文章

MATLAB教程案例12基于GA遗传优化算法的函数极值计算matlab仿真及其他应用

基于GA遗传算法的异构网络垂直切换优化算法的matlab仿真

GA避障基于遗传优化算法的小车障碍物避障仿真

MATLAB教程案例97基于GA遗传优化的CNN卷积神经网络最优训练参数搜索matlab仿真

基于GA优化的OSPF协议网络路由matlab仿真

基于遗传优化算法小车避障问题matlab仿真,地图为栅格地图