04 BTC-实现

Posted YangYi215

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了04 BTC-实现相关的知识,希望对你有一定的参考价值。

《区块链技术与应用》课程链接:https://www.bilibili.com/video/BV1Vt411X7JF/?spm_id_from=333.337.search-card.all.click


04 BTC-实现

比特币系统是 transaction-based ledger


UTXO:Upsent Transaction Output

UTXO中的元素需要给出它所在交易的哈希值,以及它是交易的第几个输出(因为一笔交易可能有多个输出)。

为什么要维护一个UTXO数据结构?

验证交易是否合法,要花的币必须在UTXO中才行,如果不在,要么是不存在的,要么是之前已经被花过了。

全节点要在内存中维护一个UTXO的数据结构,以便快速检测double spending。

每个交易会消耗掉一些UTXO输出,同时也会产生新的UTXO输出。

如果某个人收到一笔比特币转账,始终不花这笔钱(不想花或私钥丢失),那么这笔钱的信息将永久的保存在全节点的UTXO中。【虽然UTXO的大小不断增大,但是目前为止,装在一个服务器的内存中还是完全足够的】


total inputs = total outputs

奖励光有CoinBase Transaction是不是够的,发布区块的节点为什么要把你的交易打包在交易中呢?这样做对它有什么好处吗?

比如:有些自私的节点,只打包与自己相关的交易,其余交易都不管,打包其它交易对它没有任何好处,而且还有一定的代价,因为你要验证交易的合法性,而且区块中的交易多的话,占用的带宽也多,在网络中传播的速度就会慢。

所以,才有了transaction fee。


(21万 * 10 分钟)/ (60分钟 * 24小时 * 365天)≈ 4年

大概每4年交易减半,2140年不发币。


以太坊是account-based ledger。【系统显示的记录每个账户的余额】


每隔2016个区块,需要调整难度Difficulty,保持出块时间在10分钟左右。


区块数据信息:

Block header的数据结构:

需要注意:nNonce是32位的无符号整型,最多有 $2^32$ 的取值,按照比特币目前的挖矿难度,就算把可能的取值都遍历,很可能仍然找不到符合要求的数,因为搜索空间不够大。

比特币系统并不要求非常精确的时间,所以可以进行一定范围的调整,只要别太离谱。

nBits是(目标阈值target,编码之后的结果),不能进行调整。

可以通过修改Merkle root hash值,更进一步,修改的是CoinBase Tranctions的输入。(因为该交易的输入为空)

其中CoinBase Tranctions的输入可以写任何想要值的hash内容。(比如股票预测,生活琐事)

块头中的nNonce不够用,可以使用coinbase中的前8个字节,这样搜索空间增大到了 $2^96$ 。

挖矿的时候执行两层循环。外层循环调整Coinbase中的值之后,算出block header中的根hash值之后,内层循环再计算nonce中的值。


下述为比特币中普通交易结构的示意图:


挖矿过程中每次尝试nonce,可以看作是一个Bernoulli trial:a random experiment with binary outcome.【每次两种可能性,如:扔硬币,因为硬币可能不均匀,所以正面朝上的概率为p,反面朝上的概率为 1-p 】

挖矿中所有的 Bernoulli trial 构成了一个 Bernoulli process:a sequence of independent Bernoulli trial.

Bernoulli process的一个性质是无记忆性(memoryless)。做大量的实验,前面的实验结果,对后面的实验是没有影响的。【比如:掷硬币,10次反面朝上,是不是下一次正面朝上的概率大一些呢?不是的】

对挖矿来说,每次尝试nonce,成功的可能性很小,需要尝试大量的nonce,才有可能找到符合要求的,这种情况下,Bernoulli process 可以用 Poisson process 来近似。

出块时间服从指数分布(exponential distribution)。

将来还要挖多长时间,和过去挖了多长时间,是没有关系的,仍然是服从指数分布的,平均还是要10分钟。

如果不是progress free,过去的计算对未来的计算有影响,那么算力强的矿工会有不成比例的优势,因为算力强的矿工做的工作肯定是多的。

有两个矿工 A 和 B,A的算力是B的10倍,理想情况下,A获得记账权的概率也应该是B的10倍,这才算是公平。现在A尝试了那么多的nonce,之后找到正确nonce的概率就会增大,这就叫做不成比例的优势。

所以,progress free的性质不是无情,恰恰是挖矿公平性的保证。


geometric series

21万 * 50 + 21万 * 25 + 21万 * 12.5 ...... = 2100万


虽然,挖矿计算的东西是没有什么意义的,但是,挖矿的过程,对于维护比特币系统的安全性是至关重要的。

BitCoin is secured by mining.

对于一个去中心化的,没有membership控制的系统来说,挖矿提供了一种凭借算力投票的有效手段,只要大部分算力是掌握在诚实节点的手中(算力大的投票节点,投票权大),系统的安全性就能够得到保证。


虽然出块奖励少,但是比特币价值反而变高。


假如系统中一半以上的节点都是诚实节点,那么我们能不能保证写入区块链的交易都是合法的?

恶意节点也有可能获得记账权,然后强行写了一笔错误的交易,但是诚实节点不认可该区块中的交易,会继续沿着之前的块往后挖。

定义一个有恶意的攻击是否成功的标准,是要看它能不能让诚实节点接受这个交易,如果仅仅是有恶意的节点之间认可,诚实节点之间不认可,那是没有用的。

比特币讲究的是拓展最长合法链,如果区块不合法,不管不合法区块多长都没有用,是作废的。【这样攻击者既投不了币,也白白损失了出块奖励】


区块往哪个位置挖,是从一开始决定的,因为需要设置前一个区块的hash。


使用fork attack达到double spending attack的效果。


为了防止上述攻击,简单的方法,多等几个确认(confirmation)。

six confirmation之后,才能真正确认一笔交易。


区块链是不可篡改的账本,那是不是说,凡是写入区块链中的内容(irrevocable ledger),那是不是说,凡是写入区块链中的内容,就永远都改不了了。

这种不可篡改性,只是一种概率上的保证。


其实还有一种说法,叫做zero confimation。交易发出之后,还没有写入到区块链中。


比特币全节点在缺省条件下,是按照监听到的交易的顺序进行打包的。


获得记账权的全节点,能不能故意不把某些合法的交易包含到区块中?

问题也不大,因为合法交易还可以写到下一个区块中,总有诚实的节点愿意发布这些交易。


比特币协议规定,每个区块的大小不能超过 1M 个字节,交易太多,有些交易只能等到下一个区块中。


selfish mining 的好处和风险:

好处:可能浪费了别人的算力,减少了竞争。

坏处:可能在自己挖下一个区块的时候,别人挖出了上一个区块,这样自己只能赶紧把自己挖出的区块发布出去,形成分叉,说不能还能获得奖励。

[易学易懂系列|rustlang语言|零基础|快速入门|(27)|实战4:从零实现BTC区块链]

[易学易懂系列|rustlang语言|零基础|快速入门|(27)|实战4:从零实现BTC区块链]

项目实战

实战4:从零实现BTC区块链

我们今天来开发我们的BTC区块链系统。

简单来说,从数据结构的角度上来说,区块链,就是区块组成的链。

以下就是BTC区块链典型的结构:

技术图片

那最小单元就是区块:block。

这个block包含两部分:区块头,区块体。

我们先忽略Merkle树,先简化所有数据结构,只保留最基本的数据结构。

那区块头,就包含:时间截;前一个区块地址

区块体,就包含交易数据,我们用一个vector来存储。

代码如下 :

///交易结构体
#[derive(Clone, Hash, Serialize, Deserialize, Debug)]
pub struct Transaction {
    sender: String,    //发送者
    recipient: String, //接收者
    amount: i64,       //交易数量
}
/// 区块结构体
#[derive(Clone, Hash, Serialize, Deserialize, Debug)]
pub struct Block {
    pub index: u64,                     //区块高度
    timestamp: DateTime<Utc>,           //时间截
    pub transactions: Vec<Transaction>, //交易
    pub proof: u64,                     //证明
    pub previous_hash: String,          //上一个区块哈希地址
}
//区块链结构体
#[derive(Default)]
pub struct Blockchain {
    pub chain: Vec<Block>,                  //区块链帐本
    current_transactions: Vec<Transaction>, //交易集合
    pub nodes: HashSet<String>,             //节点集合
}

现在我们创建了一个基本的区块数据结构,现在我们来让矿工来创建区块吧。

怎么让不同的矿工,积极地创建区块呢?

我们引入一个机制叫:POW共识机制。

什么叫POW?简单来说,就是大家根据给定的一个数值proof,进行hash计算,谁最先算出来的结果值符合某个条件,就拥有创建新的区块,并把这个区块连接到原来的区块链上的权力。

比如,困难程度为5,那有个矿工用proof数据进行SHA哈希计算,出如下结果:

0x0000010000000000000000000000000000000000000000000000000000000000

这个结果,前面的0(除了0x外)是5个,则这就是结果值。

如果,没有计算出上面的结果值,矿工将proof自增1,再进行SHA哈希计算,直到计算出这个符合条件的结果值为止。

而那个给定的数据值proof,也要放在区块头,这个值在每次创建新区块的时候由矿工产生并写入区块头。

当然,如果 两个节点都算出结果并加入了新区块,这时,会产生链的分叉,这时如何决定冲突呢?

我们用最长链原则,即给定周期内,哪个节点拥有的链最长,就用哪个。

所以我们的共识机制是:POW+最长链原则

这个共识机制核心 代码如下:

impl Blockchain {
    //创建创世区块
    pub fn new() -> Blockchain {
        let mut blockchain = Blockchain {
            chain: vec![],
            current_transactions: vec![],
            nodes: HashSet::new(),
        };
        blockchain.new_block(100, Some("1"));
        blockchain
    }
    /// Create a new Block in the Blockchain
    ///
    /// :param proof: The proof given by the Proof of Work algorithm
    /// :param previous_hash: (Optional) hash of previous Block
    /// :return: New Bloc
    /// 创建新区块
    pub fn new_block(&mut self, proof: u64, previous_hash: Option<&str>) -> Block {
        let block = Block {
            index: (self.chain.len() + 1) as u64,
            timestamp: Utc::now(),
            transactions: self.current_transactions.drain(0..).collect(),
            proof,
            previous_hash: previous_hash.unwrap_or("0").to_string(),
        };

        self.chain.push(block.clone());
        block
    }
    /// Creates a new transaction to go into the next mined Block
    ///
    /// :param sender: Address of the ??ender
    /// :param recipient: Address of the recipient
    /// :param amount: Amount
    /// :return: The index of the Block that will hold this transaction
    /// 发起一个新交易,将写入下一个区块
    pub fn new_transaction(&mut self, sender: &str, recipient: &str, amount: i64) -> u64 {
        self.current_transactions.push(Transaction {
            sender: sender.to_string(),
            recipient: recipient.to_string(),
            amount,
        });
        self.last_block().unwrap().index + 1
    }
    /// Simple Proof of Work Algorithm:
    /// - Find a number p' such that hash(pp') contains 4 leading zeroes,
    ///   where p is the previous proof, and p' is the new proof
    /// POW工作量证明共识机制算法
    pub fn proof_of_work(last_block: &Block) -> u64 {
        let mut proof = 0;
        let last_proof = last_block.proof;
        let last_hash = &last_block.previous_hash;
        while !Self::valid_proof(last_proof, proof, last_hash) {
            proof += 1;
        }
        proof
    }
    /// Validates the Proof: Does hash(last_proof, proof, last_hash) containt 4 leading zeroes
    //验证工作证明数字
    fn valid_proof(last_proof: u64, proof: u64, last_hash: &String) -> bool {
        let guess = format!("{}{}{}", last_proof, proof, last_hash);
        let guess_hash = hex_digest(Algorithm::SHA256, guess.as_bytes());
        guess_hash.ends_with("00000") //困难度为5
    }

    /// Creates a SHA-256 hash of a Block
    ///
    /// :param block: Block
    /// :return hash for the block
    /// 创建一个区块 的哈希值,基SHA-256算法
    pub fn hash(block: &Block) -> String {
        let serialized = serde_json::to_string(&block).unwrap();
        hex_digest(Algorithm::SHA256, serialized.as_bytes())
    }
    /// Returns the last Block in the chain
    /// 返回最后一个区块
    pub fn last_block(&self) -> Option<&Block> {
        self.chain.last()
    }

    /// Add a new node to the list of nodes
    ///
    /// :param address: Address of the node. Eg. 'http://192.168.0.5:5000'
    ///
    /// 节点注册,即新节点加入区块链网络,注册地址参数为节点服务器地址,如:'http://192.168.0.5:5000‘
    pub fn register_node(&mut self, address: &str) {
        let parsed_url = urlparse(address);
        self.nodes.insert(parsed_url.netloc);
    }

    /// Determine if a given blockchain is valid
    /// 链的验证
    fn valid_chain(&self, chain: &[Block]) -> bool {
        let mut last_block = &chain[0];
        let mut current_index: usize = 1;
        while current_index < chain.len() {
            let block = &chain[current_index];
            println!("{:?}", last_block);
            println!("{:?}", block);
            println!("-----------");
            if block.previous_hash != Blockchain::hash(last_block) {
                return false;
            }
            if !Blockchain::valid_proof(last_block.proof, block.proof, &last_block.previous_hash) {
                return false;
            }

            last_block = block;
            current_index += 1;
        }
        true
    }

    /// This is our Consensus Algorithm, it resolves conflicts
    /// by replacing our chain with the longest one in the network.
    ///
    /// :return True if our chain was replaced and false otherwise
    /// 解决冲突的机制,即共识机制,最长链原则处理逻辑,即共识机制为(POw+最长链原则)
    pub fn resolve_conflicts(&mut self) -> bool {
        let mut max_length = self.chain.len();
        let mut new_chain: Option<Vec<Block>> = None;

        // Grab and verify the chains from all the nodes in our network
        for node in &self.nodes {
            let mut response = reqwest::get(&format!("http://{}/chain", node)).unwrap();
            if response.status().is_success() {
                let node_chain: Chain = response.json().unwrap();
                if node_chain.length > max_length && self.valid_chain(&node_chain.chain) {
                    max_length = node_chain.length;
                    new_chain = Some(node_chain.chain);
                }
            }
        }
        // Replace our chain if we discovered a new, valid chain longer than ours
        match new_chain {
            Some(x) => {
                self.chain = x;
                true
            }
            None => false,
        }
    }
}

以上代码,我们放在当前工程目录下的src/blockchain.rs,完整代码如下 :

use crate::api::Chain;
use chrono::{DateTime, Utc};
use crypto_hash::{hex_digest, Algorithm};
use reqwest;
use serde::{Deserialize, Serialize};
use std::collections::HashSet;
use urlparse::urlparse;
///交易结构体
#[derive(Clone, Hash, Serialize, Deserialize, Debug)]
pub struct Transaction {
    sender: String,    //发送者
    recipient: String, //接收者
    amount: i64,       //交易数量
}
/// 区块结构体
#[derive(Clone, Hash, Serialize, Deserialize, Debug)]
pub struct Block {
    pub index: u64,                     //区块高度
    timestamp: DateTime<Utc>,           //时间截
    pub transactions: Vec<Transaction>, //交易
    pub proof: u64,                     //证明
    pub previous_hash: String,          //上一个区块哈希地址
}
//区块链结构体
#[derive(Default)]
pub struct Blockchain {
    pub chain: Vec<Block>,                  //区块链帐本
    current_transactions: Vec<Transaction>, //交易集合
    pub nodes: HashSet<String>,             //节点集合
}

impl Blockchain {
    //创建创世区块
    pub fn new() -> Blockchain {
        let mut blockchain = Blockchain {
            chain: vec![],
            current_transactions: vec![],
            nodes: HashSet::new(),
        };
        blockchain.new_block(100, Some("1"));
        blockchain
    }
    /// Create a new Block in the Blockchain
    ///
    /// :param proof: The proof given by the Proof of Work algorithm
    /// :param previous_hash: (Optional) hash of previous Block
    /// :return: New Bloc
    /// 创建新区块
    pub fn new_block(&mut self, proof: u64, previous_hash: Option<&str>) -> Block {
        let block = Block {
            index: (self.chain.len() + 1) as u64,
            timestamp: Utc::now(),
            transactions: self.current_transactions.drain(0..).collect(),
            proof,
            previous_hash: previous_hash.unwrap_or("0").to_string(),
        };

        self.chain.push(block.clone());
        block
    }
    /// Creates a new transaction to go into the next mined Block
    ///
    /// :param sender: Address of the ??ender
    /// :param recipient: Address of the recipient
    /// :param amount: Amount
    /// :return: The index of the Block that will hold this transaction
    /// 发起一个新交易,将写入下一个区块
    pub fn new_transaction(&mut self, sender: &str, recipient: &str, amount: i64) -> u64 {
        self.current_transactions.push(Transaction {
            sender: sender.to_string(),
            recipient: recipient.to_string(),
            amount,
        });
        self.last_block().unwrap().index + 1
    }
    /// Simple Proof of Work Algorithm:
    /// - Find a number p' such that hash(pp') contains 4 leading zeroes,
    ///   where p is the previous proof, and p' is the new proof
    /// POW工作量证明共识机制算法
    pub fn proof_of_work(last_block: &Block) -> u64 {
        let mut proof = 0;
        let last_proof = last_block.proof;
        let last_hash = &last_block.previous_hash;
        while !Self::valid_proof(last_proof, proof, last_hash) {
            proof += 1;
        }
        proof
    }
    /// Validates the Proof: Does hash(last_proof, proof, last_hash) containt 4 leading zeroes
    //验证工作证明数字
    fn valid_proof(last_proof: u64, proof: u64, last_hash: &String) -> bool {
        let guess = format!("{}{}{}", last_proof, proof, last_hash);
        let guess_hash = hex_digest(Algorithm::SHA256, guess.as_bytes());
        guess_hash.ends_with("00000") //困难度为5
    }

    /// Creates a SHA-256 hash of a Block
    ///
    /// :param block: Block
    /// :return hash for the block
    /// 创建一个区块 的哈希值,基SHA-256算法
    pub fn hash(block: &Block) -> String {
        let serialized = serde_json::to_string(&block).unwrap();
        hex_digest(Algorithm::SHA256, serialized.as_bytes())
    }
    /// Returns the last Block in the chain
    /// 返回最后一个区块
    pub fn last_block(&self) -> Option<&Block> {
        self.chain.last()
    }

    /// Add a new node to the list of nodes
    ///
    /// :param address: Address of the node. Eg. 'http://192.168.0.5:5000'
    ///
    /// 节点注册,即新节点加入区块链网络,注册地址参数为节点服务器地址,如:'http://192.168.0.5:5000‘
    pub fn register_node(&mut self, address: &str) {
        let parsed_url = urlparse(address);
        self.nodes.insert(parsed_url.netloc);
    }

    /// Determine if a given blockchain is valid
    /// 链的验证
    fn valid_chain(&self, chain: &[Block]) -> bool {
        let mut last_block = &chain[0];
        let mut current_index: usize = 1;
        while current_index < chain.len() {
            let block = &chain[current_index];
            println!("{:?}", last_block);
            println!("{:?}", block);
            println!("-----------");
            if block.previous_hash != Blockchain::hash(last_block) {
                return false;
            }
            if !Blockchain::valid_proof(last_block.proof, block.proof, &last_block.previous_hash) {
                return false;
            }

            last_block = block;
            current_index += 1;
        }
        true
    }

    /// This is our Consensus Algorithm, it resolves conflicts
    /// by replacing our chain with the longest one in the network.
    ///
    /// :return True if our chain was replaced and false otherwise
    /// 最长链原则处理逻辑,即共识机制为(POw+最长链原则)
    pub fn resolve_conflicts(&mut self) -> bool {
        let mut max_length = self.chain.len();
        let mut new_chain: Option<Vec<Block>> = None;

        // Grab and verify the chains from all the nodes in our network
        for node in &self.nodes {
            let mut response = reqwest::get(&format!("http://{}/chain", node)).unwrap();
            if response.status().is_success() {
                let node_chain: Chain = response.json().unwrap();
                if node_chain.length > max_length && self.valid_chain(&node_chain.chain) {
                    max_length = node_chain.length;
                    new_chain = Some(node_chain.chain);
                }
            }
        }
        // Replace our chain if we discovered a new, valid chain longer than ours
        match new_chain {
            Some(x) => {
                self.chain = x;
                true
            }
            None => false,
        }
    }
}

现在 我们向外界提供一些可用的API。

我们新建一个文件:src/api.rs,代码如下 :

use crate::blockchain::{Block, Blockchain, Transaction};

use actix_web::{web, HttpRequest, HttpResponse};
use serde::{Deserialize, Serialize};
use std::sync::Mutex;
///返回消息体
#[derive(Serialize, Deserialize)]
pub struct MessageResponse {
    message: String,
}
//交易请求信息
#[derive(Serialize, Deserialize)]
pub struct TransactionRequest {
    sender: String,
    recipient: String,
    amount: i64,
}
///挖矿响应消息
#[derive(Serialize)]
pub struct MiningRespose {
    message: String,
    index: u64,
    transactions: Vec<Transaction>,
    proof: u64,
    previous_hash: String,
}
///链结构体,代表现在网络上的最长链
#[derive(Serialize, Deserialize)]
pub struct Chain {
    pub chain: Vec<Block>,
    pub length: usize,
}
///节点注册请求信息
#[derive(Deserialize)]
pub struct RegisterRequest {
    nodes: Vec<String>,
}
///节点注册响应信息
#[derive(Serialize)]
pub struct RegisterResponse {
    message: String,
    total_nodes: Vec<String>,
}
//解决冲突响应信息
#[derive(Serialize)]
pub struct ResolveResponse {
    message: String,
    chain: Vec<Block>,
}
///发起新交易
pub fn new_transaction(
    state: web::Data<Mutex<Blockchain>>,
    req: web::Json<TransactionRequest>,
) -> HttpResponse {
    let sender = req.sender.to_owned();
    let recipient = req.recipient.to_owned();
    let index = state
        .lock()
        .unwrap()
        .new_transaction(&sender, &recipient, req.amount);
    HttpResponse::Created().json(MessageResponse {
        message: format! {"Transaction will be added to Block {}", index},
    })
}
///矿工挖矿
pub fn mine(
    node_identifier: web::Data<String>,
    state: web::Data<Mutex<Blockchain>>,
    _req: HttpRequest,
) -> HttpResponse {
    let (proof, previous_hash) = {
        let blockchain = state.lock().unwrap();
        let last_block = blockchain.last_block().unwrap();
        let proof = Blockchain::proof_of_work(&last_block);
        let previous_hash = Blockchain::hash(last_block);
        (proof, previous_hash)
    };
    let mut blockchain = state.lock().unwrap();
    blockchain.new_transaction("0", &*node_identifier, 1);
    let block = blockchain.new_block(proof, Some(&previous_hash));
    HttpResponse::Ok().json(MiningRespose {
        message: "New Block Forged".to_string(),
        index: block.index,
        transactions: block.transactions,
        proof,
        previous_hash,
    })
}
///当前最新链的信息
pub fn chain(state: web::Data<Mutex<Blockchain>>, _req: HttpRequest) -> HttpResponse {
    let length = state.lock().unwrap().chain.len();
    HttpResponse::Ok().json(Chain {
        chain: state.lock().unwrap().chain.clone(),
        length,
    })
}
///节点注册
pub fn register_node(
    state: web::Data<Mutex<Blockchain>>,
    req: web::Json<RegisterRequest>,
) -> HttpResponse {
    if req.nodes.is_empty() {
        return HttpResponse::BadRequest().json(MessageResponse {
            message: "Error: Please supply a valid list of nodes".to_string(),
        });
    }
    let mut blockchain = state.lock().unwrap();
    for node in req.nodes.iter() {
        blockchain.register_node(node)
    }
    HttpResponse::Created().json(RegisterResponse {
        message: "New nodes have been added".to_string(),
        total_nodes: blockchain.nodes.iter().cloned().collect(),
    })
}
///跟网络上其他节点达成共识,即解决冲突
pub fn resolve_nodes(state: web::Data<Mutex<Blockchain>>, _req: HttpRequest) -> HttpResponse {
    let mut blockchain = state.lock().unwrap();
    let replaced = blockchain.resolve_conflicts();
    let message = if replaced {
        "Our chain was replaced"
    } else {
        "Our chain is authorative"
    };
    HttpResponse::Ok().json(ResolveResponse {
        message: message.to_string(),
        chain: blockchain.chain.clone(),
    })
}

当然,我们要用到一些好用的库,在我们的Cargo.toml文件,我们加入依赖,完整代码如下:

[dependencies]
chrono = { version = "0.4.6", features = ["serde"] }
crypto-hash = "0.3.3"
serde = { version = "1.0.90", features = ["derive"] }
serde_json = "1.0"
actix-web = "1.0"
uuid = { version = "0.7", features = ["v4"] }
urlparse = "0.7.3"
reqwest = "=0.9.17"

最后我们的主程序 src/main.rs如下:

pub mod api;
pub mod blockchain;

use actix_web::{web, App, HttpServer};
use std::env;
use std::sync::Mutex;
use uuid::Uuid;

fn main() {
    let args: Vec<String> = env::args().collect();
    let port = match args.as_slice() {
        [_, key, value] => {
            if key == "--p" {
                value
            } else {
                panic!("Illegal arguments passed to the program.");
            }
        }
        _ => "5000",
    };
    // TODO: make chain shared across threads
    let sharedchain = web::Data::new(Mutex::new(blockchain::Blockchain::new()));
    let node_identifier = web::Data::new(Uuid::new_v4().to_simple().to_string());

    HttpServer::new(move || {
        App::new()
            .register_data(sharedchain.clone())
            .register_data(node_identifier.clone())
            .data(web::JsonConfig::default().limit(4096))
            .service(web::resource("/mine").route(web::get().to(api::mine)))
            .service(web::resource("/transactions/new").route(web::post().to(api::new_transaction)))
            .service(web::resource("/chain").route(web::get().to(api::chain)))
            .service(web::resource("/nodes/register").route(web::post().to(api::register_node)))
            .service(web::resource("/nodes/resolve").route(web::get().to(api::resolve_nodes)))
    })
    .bind(format!("127.0.0.1:{}", port))
    .unwrap()
    .run();
}

然后我们可以用以下命令来调用 :

挖矿:

curl http://localhost:5000/mine

创建新交易:

curl -H "Content-Type: application/json" --request POST --data '{"sender":"e79fcabd1d70433191701d17c4d13112", "recipient":"some-other-address", "amount":5}' http://localhost:5000/transactions/new

查看整条链信息:

curl http://localhost:5000/chain

注册节点:

curl -H "Content-Type: application/json" --request POST --data '{"nodes":["http://localhost:5001"]}' http://localhost:5000/nodes/register

与其他节点达成共识(共识机制):

curl http://localhost:5000/nodes/resolve

以上,希望对你有用。

如果遇到什么问题,欢迎加入:rust新手群,在这里我可以提供一些简单的帮助,加微信:360369487,注明:博客园+rust

https://asymmetric.github.io/2018/02/11/blockchain-rust/

https://jeiwan.net/posts/building-blockchain-in-go-part-1/

https://freestartupkits.com/articles/technology/cryptocurrency-news-and-tips/ultimate-rust-blockchain-tutorial/

https://hackernoon.com/learn-blockchains-by-building-one-117428612f46

https://medium.com/@vanflymen/learn-blockchains-by-building-one-117428612f46?

https://github.com/Koura/blockchain-example

以上是关于04 BTC-实现的主要内容,如果未能解决你的问题,请参考以下文章

北京大学肖臻老师《区块链技术与应用》公开课笔记-BTC

北京大学肖臻老师《区块链技术与应用》公开课笔记-BTC

AAX研报:BTC失去其市场主导地位,后续影响正在发酵

PalletOne调色板跨链的BTC实现

[易学易懂系列|rustlang语言|零基础|快速入门|(27)|实战4:从零实现BTC区块链]

待更新北京大学肖臻老师《区块链技术与应用》公开课笔记04-BTC-协议