python属性查找(attribute lookup)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python属性查找(attribute lookup)相关的知识,希望对你有一定的参考价值。

  在Python中,属性查找(attribute lookup)是比较复杂的,特别是涉及到描述符descriptor的时候。
   
  在上一文章末尾,给出了一段代码,就涉及到descriptor与attribute lookup的问题。而get系列函数(__get__, __getattr__, __getattribute__) 也很容易搞晕,本文就这些问题简单总结一下。
  首先,我们知道:
  •     python中一切都是对象,“everything is object”,包括类,类的实例,数字,模块
  •     任何object都是类(class or type)的实例(instance)
  •     如果一个descriptor只实现了__get__方法,我们称之为non-data descriptor, 如果同时实现了__get__ __set__我们称之为data descriptor。
 
    按照python doc,如果obj是某个类的实例,那么obj.name首先调用__getattribute__。如果类定义了__getattr__方法,那么在__getattribute__抛出 AttributeError 的时候就会调用到__getattr__,而对于描述符(__get__)的调用,则是发生在__getattribute__内部的。官网文档是这么描述的
    The implementation works through a precedence chain that gives data descriptors priority over instance variables, instance variables priority over non-data descriptors, and assigns lowest priority to __getattr__() if provided.
    obj = Clz(), 那么obj.attr 顺序如下:
    (1)如果“attr”是出现在Clz或其基类的__dict__中, 且attr是data descriptor, 那么调用其__get__方法, 否则
    (2)如果“attr”出现在obj的__dict__中, 那么直接返回 obj.__dict__[‘attr‘], 否则
    (3)如果“attr”出现在Clz或其基类的__dict__中
        (3.1)如果attr是non-data descriptor,那么调用其__get__方法, 否则
        (3.2)返回 __dict__[‘attr‘]
    (4)如果Clz有__getattr__方法,调用__getattr__方法,否则
    (5)抛出AttributeError 
  下面是测试代码:
  
技术分享
 1 #coding=utf-8
 2 class DataDescriptor(object):
 3     def __init__(self, init_value):
 4         self.value = init_value
 5 
 6     def __get__(self, instance, typ):
 7         return DataDescriptor __get__
 8 
 9     def __set__(self, instance, value):
10         print (DataDescriptor __set__)
11         self.value = value
12 
13 class NonDataDescriptor(object):
14     def __init__(self, init_value):
15         self.value = init_value
16 
17     def __get__(self, instance, typ):
18         return(NonDataDescriptor __get__)
19 
20 class Base(object):
21     dd_base = DataDescriptor(0)
22     ndd_base = NonDataDescriptor(0)
23 
24 
25 class Derive(Base):
26     dd_derive = DataDescriptor(0)
27     ndd_derive = NonDataDescriptor(0)
28     same_name_attr = attr in class
29 
30     def __init__(self):
31         self.not_des_attr = I am not descriptor attr
32         self.same_name_attr = attr in object
33 
34     def __getattr__(self, key):
35         return __getattr__ with key %s % key
36 
37     def change_attr(self):
38         self.__dict__[dd_base] = dd_base now in object dict 
39         self.__dict__[ndd_derive] = ndd_derive now in object dict 
40 
41 def main():
42     b = Base()
43     d = Derive()
44     print Derive object dict, d.__dict__
45     assert d.dd_base == "DataDescriptor __get__"
46     assert d.ndd_derive == NonDataDescriptor __get__
47     assert d.not_des_attr == I am not descriptor attr
48     assert d.no_exists_key == __getattr__ with key no_exists_key
49     assert d.same_name_attr == attr in object
50     d.change_attr()
51     print Derive object dict, d.__dict__
52     assert d.dd_base != dd_base now in object dict 
53     assert d.ndd_derive == ndd_derive now in object dict 
54 
55     try:
56         b.no_exists_key
57     except Exception, e:
58         assert isinstance(e, AttributeError)
59 
60 if __name__ == __main__:
61     main()
View Code

 

  注意第50行,change_attr给实例的__dict__里面增加了两个属性。通过上下两条print的输出如下:
  Derive object dict {‘same_name_attr‘: ‘attr in object‘, ‘not_des_attr‘: ‘I am not descriptor attr‘}
  Derive object dict {‘same_name_attr‘: ‘attr in object‘, ‘ndd_derive‘: ‘ndd_derive now in object dict ‘, ‘not_des_attr‘: ‘I am not descriptor attr‘, ‘dd_base‘: ‘dd_base now in object dict ‘}
 
  调用change_attr方法之后,dd_base既出现在类的__dict__(作为data descriptor), 也出现在实例的__dict__, 因为attribute lookup的循序,所以优先返回的还是Clz.__dict__[‘dd_base‘]。而ndd_base虽然出现在类的__dict__, 但是因为是nondata descriptor,所以优先返回obj.__dict__[‘dd_base‘]。其他:line48,line56表明了__getattr__的作用。line49表明obj.__dict__优先于Clz.__dict__
 
  前面提到过,类的也是对象,类是元类(metaclass)的实例,所以类属性的查找顺序基本同上,区别在于第二步,由于Clz可能有基类,所以是在Clz及其基类的__dict__查找“attr"
  
  文末,我们再来看一下这段代码。
   
 1 import functools, time
 2 class cached_property(object):
 3     """ A property that is only computed once per instance and then replaces
 4         itself with an ordinary attribute. Deleting the attribute resets the
 5         property. """
 6 
 7     def __init__(self, func):
 8         functools.update_wrapper(self, func)
 9         self.func = func
10 
11     def __get__(self, obj, cls):
12         if obj is None: return self
13         value = obj.__dict__[self.func.__name__] = self.func(obj)
14         return value
15 
16 class TestClz(object):
17     @cached_property
18     def complex_calc(self):
19         print very complex_calc
20         return sum(range(100))
21 
22 if __name__==__main__:
23     t = TestClz()
24     print >>> first call
25     print t.complex_calc
26     print >>> second call
27     print t.complex_calc

 

    cached_property是一个non-data descriptor。在TestClz中,用cached_property装饰方法complex_calc,返回值是一个descriptor实例,所以在调用的时候没有使用小括号。
    第一次调用t.complex_calc之前,obj(t)的__dict__中没有”complex_calc“, 根据查找顺序第三条,执行cached_property.__get__, 这个函数代用缓存的complex_calc函数计算出结果,并且把结果放入obj.__dict__。那么第二次访问t.complex_calc的时候,根据查找顺序,第二条有限于第三条,所以就直接返回obj.__dict__[‘complex_calc‘]。bottle的源码中还有两个descriptor,非常厉害!
 
references:
(2)Object attribute lookup in Python,  http://www.betterprogramming.com/object-attribute-lookup-in-python.html
(3)python __set__ __get__ 等解释, http://blog.csdn.net/huithe/article/details/7484606

以上是关于python属性查找(attribute lookup)的主要内容,如果未能解决你的问题,请参考以下文章

python属性查找 深入理解(attribute lookup)

pickle.PicklingError: Can't pickle <function past_match_sim at 0x7fa26e03b7b8>: attribute look

appium+python自动化34-获取元素属性get_attribute

[attribute] 匹配包含给定属性的元素

Linux命令之匹配行开头字符串look

appium+python自动化34-获取元素属性get_attribute