python GIL :全局解释器

Posted 起个名字真难1

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python GIL :全局解释器相关的知识,希望对你有一定的参考价值。

cpython 解释器中存在一个GIL(全局解释器锁),无论多少个线程、多少颗cpu

他的作用就是保证同一时刻只有一个线程可以执行代码,因此造成了我们使用多线程的时候无法实现并行。

因为有GIL的存在、所以同一时刻只能有一个线程被CPU执行

 任务:IO 密集型:可以采用多线程(多进程+协成)

           计算密集型:python不适用

(1)IO 密集型、CPU会是实现自动切换 提高工作效率

def ListenMusic(name):
    print("beging listening to %s,%s" %(name,time.ctime()))
    time.sleep(5)
    print("end listening %s" % time.ctime())
def Recordlog(name):
    print("beging recoding to %s,%s" %(name,time.ctime()))
    time.sleep(5)
    print("end recoding %s" % time.ctime())
if __name__ == __main__:
    threads=[]
    t1=threading.Thread(target=ListenMusic,args=("凤凰传奇",))
    t2=threading.Thread(target=Recordlog,args=("python多线程",))
    threads.append(t1)
    threads.append(t2)
    for t in threads:
        t.start()

(2) 计算密集型 cpu 一直处于工作状态、没有io流的切换、不适用多进程

import threading,time
def add():
    s=0
    for i in range(100000990):
        s +=i
    print("累加的结果是:",s)
def mul():
    s1=1
    for i in range(1,10000):
        s1 *= i
    print("累乘的结果是:",s1)
if __name__ == __main__:
    start= time.time()
    L = []
    t1=threading.Thread(target=add)
    t2=threading.Thread(target=mul)

    L.append(t1)
    L.append(t2)
    for t in L:
        t.start()
    for t in L:
        t.join()
    print("总共花费时间",time.time()-start)

 

以上是关于python GIL :全局解释器的主要内容,如果未能解决你的问题,请参考以下文章

python高性能编程--002--全局解释器锁GIL

python GIL :全局解释器

GIL(全局解释器锁)

Python核心全局解释器锁GIL

Python入门学习-DAY36-GIL全局解释器锁死锁现象与递归锁信号量Event事件线程queue

python GIL锁