目标检测算法(R-CNN,fast R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标检测算法(R-CNN,fast R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3)相关的知识,希望对你有一定的参考价值。

参考技术A 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理。  目标检测可以理解为是物体识别和物体定位的综合 ,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置。

2014年R-CNN算法被提出,基本奠定了two-stage方式在目标检测领域的应用。它的算法结构如下图

算法步骤如下:

R-CNN较传统的目标检测算法获得了50%的性能提升,在使用VGG-16模型作为物体识别模型情况下,在voc2007数据集上可以取得66%的准确率,已经算还不错的一个成绩了。其最大的问题是速度很慢,内存占用量很大,主要原因有两个

针对R-CNN的部分问题,2015年微软提出了Fast R-CNN算法,它主要优化了两个问题。

R-CNN和fast R-CNN均存在一个问题,那就是 由选择性搜索来生成候选框,这个算法很慢 。而且R-CNN中生成的2000个左右的候选框全部需要经过一次卷积神经网络,也就是需要经过2000次左右的CNN网络,这个是十分耗时的(fast R-CNN已经做了改进,只需要对整图经过一次CNN网络)。这也是导致这两个算法检测速度较慢的最主要原因。

faster R-CNN 针对这个问题, 提出了RPN网络来进行候选框的获取,从而摆脱了选择性搜索算法,也只需要一次卷积层操作,从而大大提高了识别速度 。这个算法十分复杂,我们会详细分析。它的基本结构如下图

主要分为四个步骤:

使用VGG-16卷积模型的网络结构:

卷积层采用的VGG-16模型,先将PxQ的原始图片,缩放裁剪为MxN的图片,然后经过13个conv-relu层,其中会穿插4个max-pooling层。所有的卷积的kernel都是3x3的,padding为1,stride为1。pooling层kernel为2x2, padding为0,stride为2。

MxN的图片,经过卷积层后,变为了(M/16) x (N/16)的feature map了。

faster R-CNN抛弃了R-CNN中的选择性搜索(selective search)方法,使用RPN层来生成候选框,能极大的提升候选框的生成速度。RPN层先经过3x3的卷积运算,然后分为两路。一路用来判断候选框是前景还是背景,它先reshape成一维向量,然后softmax来判断是前景还是背景,然后reshape恢复为二维feature map。另一路用来确定候选框的位置,通过bounding box regression实现,后面再详细讲。两路计算结束后,挑选出前景候选框(因为物体在前景中),并利用计算得到的候选框位置,得到我们感兴趣的特征子图proposal。

卷积层提取原始图像信息,得到了256个feature map,经过RPN层的3x3卷积后,仍然为256个feature map。但是每个点融合了周围3x3的空间信息。对每个feature map上的一个点,生成k个anchor(k默认为9)。anchor分为前景和背景两类(我们先不去管它具体是飞机还是汽车,只用区分它是前景还是背景即可)。anchor有[x,y,w,h]四个坐标偏移量,x,y表示中心点坐标,w和h表示宽度和高度。这样,对于feature map上的每个点,就得到了k个大小形状各不相同的选区region。

对于生成的anchors,我们首先要判断它是前景还是背景。由于感兴趣的物体位于前景中,故经过这一步之后,我们就可以舍弃背景anchors了。大部分的anchors都是属于背景,故这一步可以筛选掉很多无用的anchor,从而减少全连接层的计算量。

对于经过了3x3的卷积后得到的256个feature map,先经过1x1的卷积,变换为18个feature map。然后reshape为一维向量,经过softmax判断是前景还是背景。此处reshape的唯一作用就是让数据可以进行softmax计算。然后输出识别得到的前景anchors。

另一路用来确定候选框的位置,也就是anchors的[x,y,w,h]坐标值。如下图所示,红色代表我们当前的选区,绿色代表真实的选区。虽然我们当前的选取能够大概框选出飞机,但离绿色的真实位置和形状还是有很大差别,故需要对生成的anchors进行调整。这个过程我们称为bounding box regression。

假设红色框的坐标为[x,y,w,h], 绿色框,也就是目标框的坐标为[Gx, Gy,Gw,Gh], 我们要建立一个变换,使得[x,y,w,h]能够变为[Gx, Gy,Gw,Gh]。最简单的思路是,先做平移,使得中心点接近,然后进行缩放,使得w和h接近。如下:

我们要学习的就是dx dy dw dh这四个变换。由于是线性变换,我们可以用线性回归来建模。设定loss和优化方法后,就可以利用深度学习进行训练,并得到模型了。对于空间位置loss,我们一般采用均方差算法,而不是交叉熵(交叉熵使用在分类预测中)。优化方法可以采用自适应梯度下降算法Adam。

得到了前景anchors,并确定了他们的位置和形状后,我们就可以输出前景的特征子图proposal了。步骤如下:

1,得到前景anchors和他们的[x y w h]坐标。

2,按照anchors为前景的不同概率,从大到小排序,选取前pre_nms_topN个anchors,比如前6000个

3,剔除非常小的anchors。

4,通过NMS非极大值抑制,从anchors中找出置信度较高的。这个主要是为了解决选取交叠问题。首先计算每一个选区面积,然后根据他们在softmax中的score(也就是是否为前景的概率)进行排序,将score最大的选区放入队列中。接下来,计算其余选区与当前最大score选区的IOU(IOU为两box交集面积除以两box并集面积,它衡量了两个box之间重叠程度)。去除IOU大于设定阈值的选区。这样就解决了选区重叠问题。

5,选取前post_nms_topN个结果作为最终选区proposal进行输出,比如300个。

经过这一步之后,物体定位应该就基本结束了,剩下的就是物体识别了。

和fast R-CNN中类似,这一层主要解决之前得到的proposal大小形状各不相同,导致没法做全连接。全连接计算只能对确定的shape进行运算,故必须使proposal大小形状变为相同。通过裁剪和缩放的手段,可以解决这个问题,但会带来信息丢失和图片形变问题。我们使用ROI pooling可以有效的解决这个问题。

ROI pooling中,如果目标输出为MxN,则在水平和竖直方向上,将输入proposal划分为MxN份,每一份取最大值,从而得到MxN的输出特征图。

ROI Pooling层后的特征图,通过全连接层与softmax,就可以计算属于哪个具体类别,比如人,狗,飞机,并可以得到cls_prob概率向量。同时再次利用bounding box regression精细调整proposal位置,得到bbox_pred,用于回归更加精确的目标检测框。

这样就完成了faster R-CNN的整个过程了。算法还是相当复杂的,对于每个细节需要反复理解。faster R-CNN使用resNet101模型作为卷积层,在voc2012数据集上可以达到83.8%的准确率,超过yolo ssd和yoloV2。其最大的问题是速度偏慢,每秒只能处理5帧,达不到实时性要求。

针对于two-stage目标检测算法普遍存在的运算速度慢的缺点, yolo创造性的提出了one-stage。也就是将物体分类和物体定位在一个步骤中完成。 yolo直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。通过这种方式, yolo可实现45帧每秒的运算速度,完全能满足实时性要求 (达到24帧每秒,人眼就认为是连续的)。它的网络结构如下图:

主要分为三个部分:卷积层,目标检测层,NMS筛选层。

采用Google inceptionV1网络,对应到上图中的第一个阶段,共20层。这一层主要是进行特征提取,从而提高模型泛化能力。但作者对inceptionV1进行了改造,他没有使用inception module结构,而是用一个1x1的卷积,并联一个3x3的卷积来替代。(可以认为只使用了inception module中的一个分支,应该是为了简化网络结构)

先经过4个卷积层和2个全连接层,最后生成7x7x30的输出。先经过4个卷积层的目的是为了提高模型泛化能力。yolo将一副448x448的原图分割成了7x7个网格,每个网格要预测两个bounding box的坐标(x,y,w,h)和box内包含物体的置信度confidence,以及物体属于20类别中每一类的概率(yolo的训练数据为voc2012,它是一个20分类的数据集)。所以一个网格对应的参数为(4x2+2+20) = 30。如下图

其中前一项表示有无人工标记的物体落入了网格内,如果有则为1,否则为0。第二项代表bounding box和真实标记的box之间的重合度。它等于两个box面积交集,除以面积并集。值越大则box越接近真实位置。

分类信息: yolo的目标训练集为voc2012,它是一个20分类的目标检测数据集 。常用目标检测数据集如下表:

| Name | # Images (trainval) | # Classes | Last updated |

| --------------- | ------------------- | --------- | ------------ |

| ImageNet | 450k | 200 | 2015 |

| COCO | 120K | 90 | 2014 |

| Pascal VOC | 12k | 20 | 2012 |

| Oxford-IIIT Pet | 7K | 37 | 2012 |

| KITTI Vision | 7K | 3 | |

每个网格还需要预测它属于20分类中每一个类别的概率。分类信息是针对每个网格的,而不是bounding box。故只需要20个,而不是40个。而confidence则是针对bounding box的,它只表示box内是否有物体,而不需要预测物体是20分类中的哪一个,故只需要2个参数。虽然分类信息和confidence都是概率,但表达含义完全不同。

筛选层是为了在多个结果中(多个bounding box)筛选出最合适的几个,这个方法和faster R-CNN 中基本相同。都是先过滤掉score低于阈值的box,对剩下的box进行NMS非极大值抑制,去除掉重叠度比较高的box(NMS具体算法可以回顾上面faster R-CNN小节)。这样就得到了最终的最合适的几个box和他们的类别。

yolo的损失函数包含三部分,位置误差,confidence误差,分类误差。具体公式如下:

误差均采用了均方差算法,其实我认为,位置误差应该采用均方差算法,而分类误差应该采用交叉熵。由于物体位置只有4个参数,而类别有20个参数,他们的累加和不同。如果赋予相同的权重,显然不合理。故yolo中位置误差权重为5,类别误差权重为1。由于我们不是特别关心不包含物体的bounding box,故赋予不包含物体的box的置信度confidence误差的权重为0.5,包含物体的权重则为1。

Faster R-CNN准确率mAP较高,漏检率recall较低,但速度较慢。而yolo则相反,速度快,但准确率和漏检率不尽人意。SSD综合了他们的优缺点,对输入300x300的图像,在voc2007数据集上test,能够达到58 帧每秒( Titan X 的 GPU ),72.1%的mAP。

SSD网络结构如下图:

和yolo一样,也分为三部分:卷积层,目标检测层和NMS筛选层

SSD论文采用了VGG16的基础网络,其实这也是几乎所有目标检测神经网络的惯用方法。先用一个CNN网络来提取特征,然后再进行后续的目标定位和目标分类识别。

这一层由5个卷积层和一个平均池化层组成。去掉了最后的全连接层。SSD认为目标检测中的物体,只与周围信息相关,它的感受野不是全局的,故没必要也不应该做全连接。SSD的特点如下。

每一个卷积层,都会输出不同大小感受野的feature map。在这些不同尺度的feature map上,进行目标位置和类别的训练和预测,从而达到 多尺度检测 的目的,可以克服yolo对于宽高比不常见的物体,识别准确率较低的问题。而yolo中,只在最后一个卷积层上做目标位置和类别的训练和预测。这是SSD相对于yolo能提高准确率的一个关键所在。

如上所示,在每个卷积层上都会进行目标检测和分类,最后由NMS进行筛选,输出最终的结果。多尺度feature map上做目标检测,就相当于多了很多宽高比例的bounding box,可以大大提高泛化能力。

和faster R-CNN相似,SSD也提出了anchor的概念。卷积输出的feature map,每个点对应为原图的一个区域的中心点。以这个点为中心,构造出6个宽高比例不同,大小不同的anchor(SSD中称为default box)。每个anchor对应4个位置参数(x,y,w,h)和21个类别概率(voc训练集为20分类问题,在加上anchor是否为背景,共21分类)。如下图所示:

另外,在训练阶段,SSD将正负样本比例定位1:3。训练集给定了输入图像以及每个物体的真实区域(ground true box),将default box和真实box最接近的选为正样本。然后在剩下的default box中选择任意一个与真实box IOU大于0.5的,作为正样本。而其他的则作为负样本。由于绝大部分的box为负样本,会导致正负失衡,故根据每个box类别概率排序,使正负比例保持在1:3。SSD认为这个策略提高了4%的准确率

另外,SSD采用了数据增强。生成与目标物体真实box间IOU为0.1 0.3 0.5 0.7 0.9的patch,随机选取这些patch参与训练,并对他们进行随机水平翻转等操作。SSD认为这个策略提高了8.8%的准确率。

和yolo的筛选层基本一致,同样先过滤掉类别概率低于阈值的default box,再采用NMS非极大值抑制,筛掉重叠度较高的。只不过SSD综合了各个不同feature map上的目标检测输出的default box。

SSD基本已经可以满足我们手机端上实时物体检测需求了,TensorFlow在Android上的目标检测官方模型ssd_mobilenet_v1_android_export.pb,就是通过SSD算法实现的。它的基础卷积网络采用的是mobileNet,适合在终端上部署和运行。

针对yolo准确率不高,容易漏检,对长宽比不常见物体效果差等问题,结合SSD的特点,提出了yoloV2。它主要还是采用了yolo的网络结构,在其基础上做了一些优化和改进,如下

网络采用DarkNet-19:19层,里面包含了大量3x3卷积,同时借鉴inceptionV1,加入1x1卷积核全局平均池化层。结构如下

yolo和yoloV2只能识别20类物体,为了优化这个问题,提出了yolo9000,可以识别9000类物体。它在yoloV2基础上,进行了imageNet和coco的联合训练。这种方式充分利用imageNet可以识别1000类物体和coco可以进行目标位置检测的优点。当使用imageNet训练时,只更新物体分类相关的参数。而使用coco时,则更新全部所有参数。

YOLOv3可以说出来直接吊打一切图像检测算法。比同期的DSSD(反卷积SSD), FPN(feature pyramid networks)准确率更高或相仿,速度是其1/3.。

YOLOv3的改动主要有如下几点:

不过如果要求更精准的预测边框,采用COCO AP做评估标准的话,YOLO3在精确率上的表现就弱了一些。如下图所示。

当前目标检测模型算法也是层出不穷。在two-stage领域, 2017年Facebook提出了mask R-CNN 。CMU也提出了A-Fast-RCNN 算法,将对抗学习引入到目标检测领域。Face++也提出了Light-Head R-CNN,主要探讨了 R-CNN 如何在物体检测中平衡精确度和速度。

one-stage领域也是百花齐放,2017年首尔大学提出 R-SSD 算法,主要解决小尺寸物体检测效果差的问题。清华大学提出了 RON 算法,结合 two stage 名的方法和 one stage 方法的优势,更加关注多尺度对象定位和负空间样本挖掘问题。

目标检测领域的深度学习算法,需要进行目标定位和物体识别,算法相对来说还是很复杂的。当前各种新算法也是层不出穷,但模型之间有很强的延续性,大部分模型算法都是借鉴了前人的思想,站在巨人的肩膀上。我们需要知道经典模型的特点,这些tricks是为了解决什么问题,以及为什么解决了这些问题。这样才能举一反三,万变不离其宗。综合下来,目标检测领域主要的难点如下:

一文读懂目标检测AI算法:R-CNN,faster R-CNN,yolo,SSD,yoloV2

从YOLOv1到v3的进化之路

SSD-Tensorflow超详细解析【一】:加载模型对图片进行测试  https://blog.csdn.net/k87974/article/details/80606407

YOLO    https://pjreddie.com/darknet/yolo/      https://github.com/pjreddie/darknet   

C#项目参考:https://github.com/AlturosDestinations/Alturos.Yolo

项目实践贴个图。

第二十九节,目标检测算法之Fast R-CNN算法详解

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题:

  • 训练分多步。通过上一篇博文我们知道R-CNN的训练先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。
  • 时间和内存消耗比较大。在训练SVM和回归的时候需要用网络训练的特征作为输入,特征保存在磁盘上再读入的时间消耗还是比较大的。
  • 测试的时候也比较慢,每张图片的每个region proposal都要做卷积,重复操作太多。

虽然在Fast RCNN之前有提出过SPPnet算法来解决RCNN中重复卷积的问题,但是SPPnet依然存在和RCNN一样的一些缺点比如:训练步骤过多,需要训练SVM分类器,需要额外的回归器,特征也是保存在磁盘上。因此Fast RCNN相当于全面改进了原有的这两个算法,不仅训练步骤减少了,也不需要额外将特征保存在磁盘上。

基于VGG16的Fast RCNN算法在训练速度上比RCNN快了将近9倍,比SPPnet快大概3倍;测试速度比RCNN快了213倍,比SPPnet快了10倍。在VOC2012上的mAP在66%左右。

一 Fast R-CNN思想

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢 

RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。 
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢 

原因同上。 
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大 

RCNN中独立的分类器和回归器需要大量特征作为训练样本。 
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

二 算法简述

算法的主网络是VGG16

技术分享图片

以下是训练的步骤: 

  • 输入是224*224,经过5个卷积层和2个降采样层(这两个降采样层分别跟在第一和第二个卷积层后面)
  • 进入RoI Pooling层,该层的输入是conv5层的输出和5*P个候选区域region proposal (图像序号×1+几何位置×4,序号用于训练)。
  • 然后再经过两个都是output是4096的全连接层。
  • 最后分别经过output个数是21和84的两个全连接层(这两个全连接层是并列的,不是前后关系),前者是分类的输出,代表每个region proposal属于每个类别(21类)的得分,后者是回归的输出,代表每个region proposal的四个坐标。
  • 最后是两个损失层,分类的是softmaxWithLoss,输入是label和分类层输出的得分;回归的是SmoothL1Loss,输入是回归层的输出和target坐标及weight。

测试的过程: 
与训练基本相同,最后两个loss层要改成一个softma层,输入是分类的score,输出概率。最后对每个类别采用NMS(non-maximun suppression)。

三 算法详解

Fast R-CNN的流程图如下,这个网络的输入是原始图片和候选区域,输出是分类类别和bbox回归值。对于原始图片中的候候选框区域,和SPPNet中做法一样,都是将它映射到卷积特征的对应区域(即图中的RoI projection),然后输入到RoI pooling layer,可以得到一个固定大小的特征图。将这个特征图经过2个全连接层以后得到RoI的特征,然后将特征经过全连接层,使用softmax得到分类,使用回归得到边框回归。CNN的主体结构可以来自于AlexNet,也可以来自于VGGNet。

技术分享图片

1、ROI池化层

这里唯一需要解释的就是RoI pooling layer。如果特征图(feature map)上的RoI 大小是h?w(这里忽略了通道数),将这个特征图划分为h/H?w/W个网格,每个网格大小为H*W,对每个网格做max pooling,这样得到pooling以后的大小就是H?W(在文章中,VGG16网络使用H=W=7的参数,上图中绘制的是6x6的)。无论原始的RoI多大,最后都转化为7*7大小的特征图。本文将RoI池化为7*7的输出,其实这一层就是SPP的特例,SPP金字塔只有一层就是这样的。

因此可以看出Fast RCNN主要有3个改进:

  • 卷积不再是对每个region proposal进行,而是直接对整张图像,这样减少了很多重复计算。
  • 原来RCNN是对每个region proposal分别做卷积,因为一张图像中有2000左右的region proposal,肯定相互之间的重叠率很高,因此产生重复计算。用ROI pooling进行特征的尺寸变换,因为全连接层的输入要求尺寸大小一样,因此不能直接把region proposal作为输入。
  • 将regressor放进网络一起训练,每个类别对应一个regressor,同时用softmax代替原来的SVM分类器。

2、训练

网络的训练需要从下面几个方向考虑:1、训练样本是什么;2、损失函数是什么;3、如果提出了新的网络结构,网络结构的反向传播怎么做。此外,还可以关注一下超参数的选取方法,看看作者在超参数选取上有什么好的思路可以借鉴。

3、训练样本

从网络的前向传播可以看到,网络需要的输入是图片和候选区,输出是类别和bbox,那么训练的图片每个候选区需要提前标注好类别和bbox。

作者使用层次抽样来选取训练图片。对应每个mini-batch而言,大小为128个region proposal(或者叫ROI)。先从训练图片中选取2张图片,每个图片的RoI中选取64个RoI,形成这128个RoI。这样网络前面的卷积计算是可以共享的,降低了训练的复杂度。64个RoI中,25%是有类别的(IoU>0.5u1),剩下75%是背景(IoU[0.1,0.5),u=0)。数据增强使用了水平翻转。测试的时候则每张图像大约2000个RoI。

4、损失函数

技术分享图片

将分类的loss和回归的loss整合在一起,其中分类采用log loss,即对真实分类(下图中的pu)的概率取负log,而回归的loss和R-CNN基本一样。分类层输出K+1维,表示K个类和1个背景类。

技术分享图片

这是回归的loss,其中tu表示预测的结果,u表示类别。v表示真实的结果,即bounding box regression target。输出4*K维数组t,表示分别属于K类时,应该平移缩放的参数。

技术分享图片

 

参考文章:目标检测:Fast R-CNN

   Fast RCNN算法详解

   Fast RCNN算法详解





以上是关于目标检测算法(R-CNN,fast R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3)的主要内容,如果未能解决你的问题,请参考以下文章

目标检测算法(R-CNN,fast R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3)

目标检测算法之Fast R-CNN算法详解

第二十九节,目标检测算法之Fast R-CNN算法详解

6. 目标检测算法之Fast R-CNN算法详解

计算机视觉——典型的目标检测算法(Fast R-CNN算法)(五)

一小时吃透 R-CNN & Fast R-CNN & Faster R-CNN