Faster R-CNN 论文阅读
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Faster R-CNN 论文阅读相关的知识,希望对你有一定的参考价值。
参考技术A原文: Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.
译文参考: Faster R-CNN论文翻译——中英文对照
目标检测网络依赖于Region Proposal算法假设目标位置,通过引入Region Proposal(网络RPN),与检测网络共享全图像卷积特征,使得Region Proposals的成本近乎为零。
如下图所示,图a采用的是图像金子塔(Pyramids Of Images)方法;图b采用的是滤波器金字塔(Pyramids Of Filters)方法;图c引入“锚”盒("Anchor" Boxes)这一概念作为多尺度和长宽比的参考,其可看作回归参考金字塔(Pyramids Of Regression References)方法,该方法可避免枚举图像、多尺度滤波器和长宽比。
为了将RPN与Fast R-CNN相结合,本文提出了一种新的训练策略:在region proposal任务和目标检测任务之间交替进行微调,同时保持proposals的固定。该方案能够快速收敛,两个任务之间并共享具有卷积特征的统一网络。
Faster R-CNN由两个模块组成:
RPN以任意大小的图像作为输入,输出一组矩形的目标proposals,每个proposals都有一个目标得分。在实验中,假设两个网络(RPN和Fast R-CNN)共享一组共同的卷积层,并研究了具有5个共享卷积层的 Zeiler和Fergus模型(ZF) ,以及具有13个共享卷积层的 Simonyan和Zisserman模型(VGG-16) 。
为了生成region proposals,对最后的共享卷积层输出的卷积特征图谱使用一个小网络。该网络以卷积特征图谱的 空间窗口作为输入,且每个滑动窗口映射到一个低维特征,所有空间位置共享全连接层。
该低维特征作为两个子全连接层———边界框回归层(box-regression layer, reg)和边界框分类层(box-classification layer, cls)的输入,其卷积核均为 大小。
对于每个滑动窗口位置,可同时预测多个region proposals,最大region proposals数为 。因此,reg层具有 个输出,用于编码k个边界框的坐标;cls层具有 个得分,用于估计每个proposal是目标或不是目标的概率。
Anchors:k个proposals相对于 个参考框是参数化形式。
anchor位于滑动窗口的中心,并与尺度和长宽比相关。默认情况,使用3个尺度和3个长宽比,在每个滑动位置产生 个anchors。对于大小为 的卷积特征图谱,共产生 个anchors。
基于anchor的方法建立在anchors金字塔(pyramid of anchors)上,参考多尺度和长宽比的anchor盒来分类和回归边界框,用于解决多尺度和多长宽比问题。
为了训练RPN,为每个anchor分配一个二值标签。
正标签:
负标签:IoU值低于0.3。
对Fast R-CNN中的多任务损失进行最小化。图像的损失函数为:
其中, 是mini-batch数据中anchor的索引, 是第i个anchor作为目标的预测概率。若anchor为正标签,真值 ;反之, 。 是表示预测边界框4个参数化坐标的向量, 是正真值框的向量。分类损失 为两个类别的对数损失;回归损失 ,其中 为在 Fast R-CNN 一文中定义的鲁棒损失函数(平滑 )。 表示回归损失仅对正anchor激活,否则被禁用( )。cls和rge层的输出分别由 和 组成。该两项使用 和 进行标准化,并使用平衡参数 加权处理。等式中cls项根据mini-batch的大小进行归一化,而reg项根据anchor位置的数据进行归一化。默认情况下, 从而使得cls和reg项的权重大致相等。
对于边界框回归,采用 Rich feature hierarchies for accurate object detection and semantic segmentation 一文中的4个坐标参数化方法:
其中, 和 表示边界框的中心坐标及其宽和高。变量 和 分别表示预测边界框、anchor和真值框。
采样策略:以图像为中心。
在图像中随机采样256个anchors,用于mini-batch数据中损失函数的计算,正负样本的比例为 。
从标准差为0.01的零均值高斯分布中提取权重来随机初始化所有的新网络层,而共享卷积层通过预训练ImageNet分类模型来初始化。同时,调整ZF网络的所有网络层,以及VGG网络的conv3_1之上的网络,用于节省内存的使用。对于60k的mini-batch数据,学习率为0.001;对于PASCAL VOC数据集中的20k的mini-bacth数据,学习率为0.0001。随机梯度下降算法的动量设置为0.9,重量衰减率为0.0005。
训练具有共享特征网络的三个方法:
版权印版权标识
[图解]小白都能看懂的FASTER R-CNN – 原理和实现细节
Contents [hide]
论文原文
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
介绍
Faster RCNN
由Ross B. Girshick在2016年提出,是RCNN
系列的延续和经典版本。由于图像中的目标数量和位置并不确定,卷积神经网络本身是难以处理检测这样的问题的。
为了解决这个问题,Faster RCNN使用Anchor
和分类器将原本的检测任务巧妙地转换成了卷积神经网络善于处理的分类和回归任务。数以万计事先指定好位置和大小的Anchor在图像上滑动,由一个RPN (Region Proposal Network) 来判断每个Anchor
中是否有物体,这样就将不确定数量的目标检测问题变成了一个确定的几万个子区域的二分类问题。
RPN网络接收的输入是图像经过backbone(如resnet50)的特征图,根据事先指定好的Anchor
,输出这些Anchor
中有物体的概率,要注意RPN
只能够区分有没有物体,而无法知道物体具体是什么类别的,这也是两阶段检测器的特性。
(上图为Anchor在图片中滑动)
由于Anchor
的大小是事先指定的,可能并不完全与目标的位置重合,因此RPN
还有另外一项重要的任务:给输出的检测框做回归,修正Anchor的位置。最终RPN的输出结果是这样的:(为了便于演示省略了很多概率为0的区域)
在论文中,RPN网络为CNN后面接一个3×3的卷积层,再接两个并列的(sibling)1×1的卷积层,其中一个是用来给softmax层进行分类(2分类,有物体还是没有物体),另一个用于给候选区域精确定位(框位置的偏移)。
Anchors
Anchors是一些预设大小的框,论文中Anchors的面积有三种 ANCHOR_AREAS = [128**2,256**2,512**2]
, 长宽比也有三种 ANCHOR_RATIOS = [0.5,1,2]
,所以一共有9种大小的Anchors,即k=9。Anchors的大小如下图所示:
写成坐标的形式为:
1 2 3 4 5 6 7 8 9 10 | [[ -84. -40. 99. 55.] [-176. -88. 191. 103.] [-360. -184. 375. 199.] [ -56. -56. 71. 71.] [-120. -120. 135. 135.] [-248. -248. 263. 263.] [ -36. -80. 51. 95.] [ -80. -168. 95. 183.] [-168. -344. 183. 359.]] |
原文中Anchors
的stride
为16,也就是Anchor
以步长16在原图中滑动。对于一张1000*600
的图像,总共大约有20000
个anchors(≈60×40×9),如果忽略越过图像边界的anchor,在训练时每张图像总共有约6000
个anchor。
一张图片中有这么多的Anchor
,一次全部训练是不太现实的,这相当于6000
张小图像的二分类问题在一个batch
中完成,(当然你要是有几百个G的显存可以忽略)。另外,这些Anchor
的正负样本也是不均匀的,大部分的Anchor
都是没有物体的背景,如果同时训练可能会造成偏差。
解决这两个问题的方法是每次只随机选取一部分Anchor
进行训练,在原论文中,每次在所有的Anchor
中随机选取256
个,并让它们尽量保持正样本和负样本为1:1
,这个参数可以看成是每张图片的batch_size
,在程序中也一般命名为batch_size_per_image
。
如何确定一个anchor是正样本还是负样本?
一个anchor如果满足以下两个条件之一的被认为是正样本:
(i) 这个anchor和ground truth的方框有着最大的IoU重叠。
(ii) 这个anchor和ground truth的方框有超过0.7的IoU重叠。
一个anchor如果满足以下条件的被认为是负样本:
(i) 这个anchor和ground truth的方框的IoU重叠小于0.3。
既不是正样本也不是负样本的anchor在训练中不被使用。
实现细节
1.所有输入图像都被缩放成短边600像素(长边不超过1000像素)。
假设输入图像尺寸为354(宽)×480,会被缩放为600×814,(记为image_scale),然后按照[batch, height, width, channel]即[1, 814, 600, 3]的尺寸输入网络。
2.对于vgg16网络,输入图像会被映射成512维的特征图。
由vgg网络的代码(conv5层之前):
1 2 3 4 5 6 7 8
9 10 11 12
13 14 15 | net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3], trainable=False, scope='conv1') net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], trainable=False, scope='conv2') net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], trainable=is_training, scope='conv3') net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], trainable=is_training, scope='conv4') net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], trainable=is_training, scope='conv5') |
image_scale经过了4个池化层(卷积层由于有padding不会改变feature maps长和宽),所以得到的feature maps的尺寸为image_scale的1/16,也就是[1, 51, 38, 512]。
3.Anchors的个数为51×38×9(已知k=9)。
因此rpn网络分类的输出尺寸为[1, 51, 38, 18],其中后一半[:, :, :, 9:]表示正样本的概率,前一半[:, :, :, :9]表示负样本的概率。
而矩形框偏移回归的输出尺寸为[1, 51, 38, 36],(36=9×4),每个proposed region的4个参数是输出的矩形框(roi)相对于anchor进行平移缩放的4个系数。
rpn网络最终输出的矩形框位置是anchor的位置和偏移位置计算出来的,具体计算方式见参考资料。
由于roi网络输出的方框很多(51×38×9≈17000个),原文中的做法是先clip_boxes,即去掉与边界交叉的方框(剩下5000个左右的anchor),然后使用非极大值抑制(NMS)来去掉重叠的方框,最终只保留2000或300个方框(取决于训练还是测试)。
非极大值抑制(NMS)的原理:
用普通话翻译一下非极大值抑制就是:不是局部的最大值的那些值都滚蛋
由于score越大越接近期待值,因此将与score最大的方框IoU>0.7的都去除。
4.ROI pooling的详细过程。
由于分类器的输入尺寸需要是统一的,但是RPN
给出的检测框大小并不相同,因此需要ROI pooling的操作。
将rpn输出的300个大小不同的方框从feature maps上对应的位置裁剪(crop)下来,然后缩放(resize)成14×14大小,这时候所有的方框可以表示为尺寸为[300, 14, 14, 512]的张量,再使用一个2×2的max_pool,得到的roi_pooling的结果尺寸为[300, 7, 7, 512]。
5.测试的详细过程。
测试过程中,输入的图像经过预测模型会输出[300 21]的分值以及[300 84]的方框位置。(设置网络保留300个方框,需要预测的种类为20类(pascal voc),加上背景一类)。
然后设定一个得分的阈值(比如0.95),大于该阈值的方框会被保留。如下图所示:
最后再使用一次NMS,对于多个重合的方框只保留一个。结果如下图所示:
调试信息
1 2 3 4 5 6 7 8 9 | _image shape: (1, 814, 600, 3) feature_maps shape: [ 1 51 38 512] rpn_cls_score shape: [ 1 51 38 18] # 2k=18 rpn_bbox_pred shape: [ 1 51 38 36] # 4k=36 rois shape: [300 5] # [:,0]全是0 roi_pooling shape: [300 7 7 512] cls_prob shape: [300 21] bbox_pred shape: [300 84] |
参考资料
GitHub - endernewton/tf-faster-rcnn: Tensorflow Faster RCNN for Object Detection
https://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
一文读懂Faster RCNN - 知乎
以上是关于Faster R-CNN 论文阅读的主要内容,如果未能解决你的问题,请参考以下文章
论文泛读 Faster R-CNN:利用RPN实现实时目标检测
MXNet的Faster R-CNN(基于区域提议网络的实时目标检测)《7》
深度学习论文翻译解析:Faster R-CNN: Down the rabbit hole of modern object detection