python基础之异常处理
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python基础之异常处理相关的知识,希望对你有一定的参考价值。
Python3 错误和异常
作为Python初学者,在刚学习Python编程时,经常会看到一些报错信息,在前面我们没有提及,这章节我们会专门介绍。
Python有两种错误很容易辨认:语法错误和异常。
python标准异常
异常名称 | 描述 |
---|---|
BaseException | 所有异常的基类 |
SystemExit | 解释器请求退出 |
KeyboardInterrupt | 用户中断执行(通常是输入^C) |
Exception | 常规错误的基类 |
StopIteration | 迭代器没有更多的值 |
GeneratorExit | 生成器(generator)发生异常来通知退出 |
StandardError | 所有的内建标准异常的基类 |
ArithmeticError | 所有数值计算错误的基类 |
FloatingPointError | 浮点计算错误 |
OverflowError | 数值运算超出最大限制 |
ZeroDivisionError | 除(或取模)零 (所有数据类型) |
AssertionError | 断言语句失败 |
AttributeError | 对象没有这个属性 |
EOFError | 没有内建输入,到达EOF 标记 |
EnvironmentError | 操作系统错误的基类 |
IOError | 输入/输出操作失败 |
OSError | 操作系统错误 |
WindowsError | 系统调用失败 |
ImportError | 导入模块/对象失败 |
LookupError | 无效数据查询的基类 |
IndexError | 序列中没有此索引(index) |
KeyError | 映射中没有这个键 |
MemoryError | 内存溢出错误(对于Python 解释器不是致命的) |
NameError | 未声明/初始化对象 (没有属性) |
UnboundLocalError | 访问未初始化的本地变量 |
ReferenceError | 弱引用(Weak reference)试图访问已经垃圾回收了的对象 |
RuntimeError | 一般的运行时错误 |
NotImplementedError | 尚未实现的方法 |
SyntaxError | Python 语法错误 |
IndentationError | 缩进错误 |
TabError | Tab 和空格混用 |
SystemError | 一般的解释器系统错误 |
TypeError | 对类型无效的操作 |
ValueError | 传入无效的参数 |
UnicodeError | Unicode 相关的错误 |
UnicodeDecodeError | Unicode 解码时的错误 |
UnicodeEncodeError | Unicode 编码时错误 |
UnicodeTranslateError | Unicode 转换时错误 |
Warning | 警告的基类 |
DeprecationWarning | 关于被弃用的特征的警告 |
FutureWarning | 关于构造将来语义会有改变的警告 |
OverflowWarning | 旧的关于自动提升为长整型(long)的警告 |
PendingDeprecationWarning | 关于特性将会被废弃的警告 |
RuntimeWarning | 可疑的运行时行为(runtime behavior)的警告 |
SyntaxWarning | 可疑的语法的警告 |
UserWarning | 用户代码生成的警告 |
什么是异常?
异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。
一般情况下,在Python无法正常处理程序时就会发生一个异常。
异常是Python对象,表示一个错误。
当Python脚本发生异常时我们需要捕获处理它,否则程序会终止执行。
语法错误
Python 的语法错误或者称之为解析错,是初学者经常碰到的,如下实例
>>> while True print(‘Hello world‘)
File "<stdin>", line 1, in ?
while True print(‘Hello world‘)
^
SyntaxError: invalid syntax
这个例子中,函数 print() 被检查到有错误,是它前面缺少了一个冒号(:)。
语法分析器指出了出错的一行,并且在最先找到的错误的位置标记了一个小小的箭头。
在程序运行过程中,总会遇到各种各样的错误。
有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的。
有的错误是用户输入造成的,比如让用户输入email地址,结果得到一个空字符串,这种错误可以通过检查用户输入来做相应的处理。
还有一类错误是完全无法在程序运行过程中预测的,比如写入文件的时候,磁盘满了,写不进去了,或者从网络抓取数据,网络突然断掉了。这类错误也称为异常,在程序中通常是必须处理的,否则,程序会因为各种问题终止并退出。
Python内置了一套异常处理机制,来帮助我们进行错误处理。
此外,我们也需要跟踪程序的执行,查看变量的值是否正确,这个过程称为调试。Python的pdb可以让我们以单步方式执行代码。
最后,编写测试也很重要。有了良好的测试,就可以在程序修改后反复运行,确保程序输出符合我们编写的测试。
错误处理
在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因。在操作系统提供的调用中,返回错误码非常常见。比如打开文件的函数open()
,成功时返回文件描述符(就是一个整数),出错时返回-1
。
用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须用大量的代码来判断是否出错:
def foo():
r = some_function()
if r==(-1):
return (-1)
# do something
return r
def bar():
r = foo()
if r==(-1):
print(‘Error‘)
else:
pass
一旦出错,还要一级一级上报,直到某个函数可以处理该错误(比如,给用户输出一个错误信息)。
所以高级语言通常都内置了一套try...except...finally...
的错误处理机制,Python也不例外。
try
让我们用一个例子来看看try
的机制:
try:
print(‘try...‘)
r = 10 / 0
print(‘result:‘, r)
except ZeroDivisionError as e:
print(‘except:‘, e)
finally:
print(‘finally...‘)
print(‘END‘)
当我们认为某些代码可能会出错时,就可以用try
来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except
语句块,执行完except
后,如果有finally
语句块,则执行finally
语句块,至此,执行完毕。
上面的代码在计算10 / 0
时会产生一个除法运算错误:
try...
except: division by zero
finally...
END
从输出可以看到,当错误发生时,后续语句print(‘result:‘, r)
不会被执行,except
由于捕获到ZeroDivisionError
,因此被执行。最后,finally
语句被执行。然后,程序继续按照流程往下走。
如果把除数0
改成2
,则执行结果如下:
try...
result: 5
finally...
END
由于没有错误发生,所以except
语句块不会被执行,但是finally
如果有,则一定会被执行(可以没有finally
语句)。
你还可以猜测,错误应该有很多种类,如果发生了不同类型的错误,应该由不同的except
语句块处理。没错,可以有多个except
来捕获不同类型的错误:
try:
print(‘try...‘)
r = 10 / int(‘a‘)
print(‘result:‘, r)
except ValueError as e:
print(‘ValueError:‘, e)
except ZeroDivisionError as e:
print(‘ZeroDivisionError:‘, e)
finally:
print(‘finally...‘)
print(‘END‘)
int()
函数可能会抛出ValueError
,所以我们用一个except
捕获ValueError
,用另一个except
捕获ZeroDivisionError
。
此外,如果没有错误发生,可以在except
语句块后面加一个else
,当没有错误发生时,会自动执行else
语句:
try:
print(‘try...‘)
r = 10 / int(‘2‘)
print(‘result:‘, r)
except ValueError as e:
print(‘ValueError:‘, e)
except ZeroDivisionError as e:
print(‘ZeroDivisionError:‘, e)
else:
print(‘no error!‘)
finally:
print(‘finally...‘)
print(‘END‘)
Python的错误其实也是class,所有的错误类型都继承自BaseException
,所以在使用except
时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:
try:
foo()
except ValueError as e:
print(‘ValueError‘)
except UnicodeError as e:
print(‘UnicodeError‘)
第二个except
永远也捕获不到UnicodeError
,因为UnicodeError
是ValueError
的子类,如果有,也被第一个except
给捕获了。
Python所有的错误都是从BaseException
类派生的,常见的错误类型和继承关系看这里:
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
使用try...except
捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()
调用foo()
,foo()
调用bar()
,结果bar()
出错了,这时,只要main()
捕获到了,就可以处理:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar(‘0‘)
except Exception as e:
print(‘Error:‘, e)
finally:
print(‘finally...‘)
也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally
的麻烦。
异常处理
捕捉异常可以使用try/except语句。
try/except语句用来检测try语句块中的错误,从而让except语句捕获异常信息并处理。
如果你不想在异常发生时结束你的程序,只需在try里捕获它。
语法:
以下为简单的try....except...else的语法:
try: <语句> #运行别的代码 except <名字>: <语句> #如果在try部份引发了‘name‘异常 except <名字>,<数据>: <语句> #如果引发了‘name‘异常,获得附加的数据 else: <语句> #如果没有异常发生
try语句按照如下方式工作;
- 首先,执行try子句(在关键字try和关键字except之间的语句)
- 如果没有异常发生,忽略except子句,try子句执行后结束。
- 如果在执行try子句的过程中发生了异常,那么try子句余下的部分将被忽略。如果异常的类型和 except 之后的名称相符,那么对应的except子句将被执行。最后执行 try 语句之后的代码。
- 如果一个异常没有与任何的except匹配,那么这个异常将会传递给上层的try中。
一个 try 语句可能包含多个except子句,分别来处理不同的特定的异常。最多只有一个分支会被执行。
处理程序将只针对对应的try子句中的异常进行处理,而不是其他的 try 的处理程序中的异常。
一个except子句可以同时处理多个异常,这些异常将被放在一个括号里成为一个元组,例如:
except (RuntimeError, TypeError, NameError):
pass
最后一个except子句可以忽略异常的名称,它将被当作通配符使用。你可以使用这种方法打印一个错误信息,然后再次把异常抛出。
import sys
try:
f = open(‘myfile.txt‘)
s = f.readline()
i = int(s.strip())
except OSError as err:
print("OS error: {0}".format(err))
except ValueError:
print("Could not convert data to an integer.")
except:
print("Unexpected error:", sys.exc_info()[0])
raise
try except 语句还有一个可选的else子句,如果使用这个子句,那么必须放在所有的except子句之后。这个子句将在try子句没有发生任何异常的时候执行。例如:
for arg in sys.argv[1:]:
try:
f = open(arg, ‘r‘)
except IOError:
print(‘cannot open‘, arg)
else:
print(arg, ‘has‘, len(f.readlines()), ‘lines‘)
f.close()
使用 else 子句比把所有的语句都放在 try 子句里面要好,这样可以避免一些意想不到的、而except又没有捕获的异常。
异常处理并不仅仅处理那些直接发生在try子句中的异常,而且还能处理子句中调用的函数(甚至间接调用的函数)里抛出的异常。例如:
>>> def this_fails():
x = 1/0
>>> try:
this_fails()
except ZeroDivisionError as err:
print(‘Handling run-time error:‘, err)
Handling run-time error: int division or modulo by zero
抛出异常
Python 使用 raise 语句抛出一个指定的异常。例如:
>>> raise NameError(‘HiThere‘)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: HiThere
raise 唯一的一个参数指定了要被抛出的异常。它必须是一个异常的实例或者是异常的类(也就是 Exception 的子类)。
如果你只想知道这是否抛出了一个异常,并不想去处理它,那么一个简单的 raise 语句就可以再次把它抛出。
>>> try:
raise NameError(‘HiThere‘)
except NameError:
print(‘An exception flew by!‘)
raise
An exception flew by!
Traceback (most recent call last):
File "<stdin>", line 2, in ?
NameError: HiThere
调用堆栈
如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py
:
# err.py:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
bar(‘0‘)
main()
执行,结果如下:
$ python3 err.py
Traceback (most recent call last):
File "err.py", line 11, in <module>
main()
File "err.py", line 9, in main
bar(‘0‘)
File "err.py", line 6, in bar
return foo(s) * 2
File "err.py", line 3, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:
错误信息第1行:
Traceback (most recent call last):
告诉我们这是错误的跟踪信息。
第2~3行:
File "err.py", line 11, in <module>
main()
调用main()
出错了,在代码文件err.py
的第11行代码,但原因是第9行:
File "err.py", line 9, in main
bar(‘0‘)
调用bar(‘0‘)
出错了,在代码文件err.py
的第9行代码,但原因是第6行:
File "err.py", line 6, in bar
return foo(s) * 2
原因是return foo(s) * 2
这个语句出错了,但这还不是最终原因,继续往下看:
File "err.py", line 3, in foo
return 10 / int(s)
原因是return 10 / int(s)
这个语句出错了,这是错误产生的源头,因为下面打印了:
ZeroDivisionError: integer division or modulo by zero
根据错误类型ZeroDivisionError
,我们判断,int(s)
本身并没有出错,但是int(s)
返回0
,在计算10 / 0
时出错,至此,找到错误源头。
记录错误
如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。
Python内置的logging
模块可以非常容易地记录错误信息:
# err_logging.py
import logging
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar(‘0‘)
except Exception as e:
logging.exception(e)
main()
print(‘END‘)
同样是出错,但程序打印完错误信息后会继续执行,并正常退出:
$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar(‘0‘)
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END
通过配置,logging
还可以把错误记录到日志文件里,方便事后排查。
抛出错误
因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。
如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise
语句抛出一个错误的实例:
# err_raise.py
class FooError(ValueError):
pass
def foo(s):
n = int(s)
if n==0:
raise FooError(‘invalid value: %s‘ % s)
return 10 / n
foo(‘0‘)
执行,可以最后跟踪到我们自己定义的错误:
$ python3 err_raise.py
Traceback (most recent call last):
File "err_throw.py", line 11, in <module>
foo(‘0‘)
File "err_throw.py", line 8, in foo
raise FooError(‘invalid value: %s‘ % s)
__main__.FooError: invalid value: 0
只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueError
,TypeError
),尽量使用Python内置的错误类型。
最后,我们来看另一种错误处理的方式:
# err_reraise.py
def foo(s):
n = int(s)
if n==0:
raise ValueError(‘invalid value: %s‘ % s)
return 10 / n
def bar():
try:
foo(‘0‘)
except ValueError as e:
print(‘ValueError!‘)
raise
bar()
在bar()
函数中,我们明明已经捕获了错误,但是,打印一个ValueError!
后,又把错误通过raise
语句抛出去了,这不有病么?
其实这种错误处理方式不但没病,而且相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。好比一个员工处理不了一个问题时,就把问题抛给他的老板,如果他的老板也处理不了,就一直往上抛,最终会抛给CEO去处理。
raise
语句如果不带参数,就会把当前错误原样抛出。此外,在except
中raise
一个Error,还可以把一种类型的错误转化成另一种类型:
try:
10 / 0
except ZeroDivisionError:
raise ValueError(‘input error!‘)
只要是合理的转换逻辑就可以,但是,决不应该把一个IOError
转换成毫不相干的ValueError
。
小结
Python内置的try...except...finally
用来处理错误十分方便。出错时,会分析错误信息并定位错误发生的代码位置才是最关键的。
程序也可以主动抛出错误,让调用者来处理相应的错误。但是,应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。
用户自定义异常
你可以通过创建一个新的exception类来拥有自己的异常。异常应该继承自 Exception 类,或者直接继承,或者间接继承,例如:
>>> class MyError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
>>> try:
raise MyError(2*2)
except MyError as e:
print(‘My exception occurred, value:‘, e.value)
My exception occurred, value: 4
>>> raise MyError(‘oops!‘)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
__main__.MyError: ‘oops!‘
在这个例子中,类 Exception 默认的 __init__() 被覆盖。
当创建一个模块有可能抛出多种不同的异常时,一种通常的做法是为这个包建立一个基础异常类,然后基于这个基础类为不同的错误情况创建不同的子类:
class Error(Exception):
"""Base class for exceptions in this module."""
pass
class InputError(Error):
"""Exception raised for errors in the input.
Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error
"""
def __init__(self, expression, message):
self.expression = expression
self.message = message
class TransitionError(Error):
"""Raised when an operation attempts a state transition that‘s not
allowed.
Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed
"""
def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message
大多数的异常的名字都以"Error"结尾,就跟标准的异常命名一样。
定义清理行为
try 语句还有另外一个可选的子句,它定义了无论在任何情况下都会执行的清理行为。 例如:
>>> try:
raise KeyboardInterrupt
finally:
print(‘Goodbye, world!‘)
Goodbye, world!
KeyboardInterrupt
以上例子不管try子句里面有没有发生异常,finally子句都会执行。
如果一个异常在 try 子句里(或者在 except 和 else 子句里)被抛出,而又没有任何的 except 把它截住,那么这个异常会在 finally 子句执行后再次被抛出。
下面是一个更加复杂的例子(在同一个 try 语句里包含 except 和 finally 子句):
>>> def divide(x, y):
try:
result = x / y
except ZeroDivisionError:
print("division by zero!")
else:
print("result is", result)
finally:
print("executing finally clause")
>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: ‘str‘ and ‘str‘
预定义的清理行为
一些对象定义了标准的清理行为,无论系统是否成功的使用了它,一旦不需要它了,那么这个标准的清理行为就会执行。
这面这个例子展示了尝试打开一个文件,然后把内容打印到屏幕上:
for line in open("myfile.txt"):
print(line, end="")
以上这段代码的问题是,当执行完毕后,文件会保持打开状态,并没有被关闭。
关键词 with 语句就可以保证诸如文件之类的对象在使用完之后一定会正确的执行他的清理方法:
with open("myfile.txt") as f:
for line in f:
print(line, end="")
以上这段代码执行完毕后,就算在处理过程中出问题了,文件 f 总是会关闭。
调试
程序能一次写完并正常运行的概率很小,基本不超过1%。总会有各种各样的bug需要修正。有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug。第一种方法简单直接粗暴有效,就是用print()
把可能有问题的变量打印出来看看:
def foo(s):
n = int(s)
print(‘>>> n = %d‘ % n)
return 10 / n
def main():
foo(‘0‘)
main()
执行后在输出中查找打印的变量值:
$ python3 err.py
>>> n = 0
Traceback (most recent call last):
...
ZeroDivisionError: integer division or modulo by zero
用print()
最大的坏处是将来还得删掉它,想想程序里到处都是print()
,运行结果也会包含很多垃圾信息。所以,我们又有第二种方法。
断言
凡是用print()
来辅助查看的地方,都可以用断言(assert)来替代:
def foo(s):
n = int(s)
assert n != 0, ‘n is zero!‘
return 10 / n
def main():
foo(‘0‘)
assert
的意思是,表达式n != 0
应该是True
,否则,根据程序运行的逻辑,后面的代码肯定会出错。
如果断言失败,assert
语句本身就会抛出AssertionError
:
$ python3 err.py
Traceback (most recent call last):
...
AssertionError: n is zero!
程序中如果到处充斥着assert
,和print()
相比也好不到哪去。不过,启动Python解释器时可以用-O
参数来关闭assert
:
$ python3 -O err.py
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
关闭后,你可以把所有的assert
语句当成pass
来看。
logging
把print()
替换为logging
是第3种方式,和assert
比,logging
不会抛出错误,而且可以输出到文件:
import logging
s = ‘0‘
n = int(s)
logging.info(‘n = %d‘ % n)
print(10 / n)
logging.info()
就可以输出一段文本。运行,发现除了ZeroDivisionError
,没有任何信息。怎么回事?
别急,在import logging
之后添加一行配置再试试:
import logging
logging.basicConfig(level=logging.INFO)
看到输出了:
$ python3 err.py
INFO:root:n = 0
Traceback (most recent call last):
File "err.py", line 8, in <module>
print(10 / n)
ZeroDivisionError: division by zero
这就是logging
的好处,它允许你指定记录信息的级别,有debug
,info
,warning
,error
等几个级别,当我们指定level=INFO
时,logging.debug
就不起作用了。同理,指定level=WARNING
后,debug
和info
就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。
logging
的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。
pdb
第4种方式是启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:
# err.py
s = ‘0‘
n = int(s)
print(10 / n)
然后启动:
$ python3 -m pdb err.py
> /Users/michael/Github/learn-python3/samples/debug/err.py(2)<module>()
-> s = ‘0‘
以参数-m pdb
启动后,pdb定位到下一步要执行的代码-> s = ‘0‘
。输入命令l
来查看代码:
(Pdb) l
1 # err.py
2 -> s = ‘0‘
3 n = int(s)
4 print(10 / n)
输入命令n
可以单步执行代码:
(Pdb) n
> /Users/michael/Github/learn-python3/samples/debug/err.py(3)<module>()
-> n = int(s)
(Pdb) n
> /Users/michael/Github/learn-python3/samples/debug/err.py(4)<module>()
-> print(10 / n)
任何时候都可以输入命令p 变量名
来查看变量:
(Pdb) p s
‘0‘
(Pdb) p n
0
输入命令q
结束调试,退出程序:
(Pdb) q
这种通过pdb在命令行调试的方法理论上是万能的,但实在是太麻烦了,如果有一千行代码,要运行到第999行得敲多少命令啊。还好,我们还有另一种调试方法。
pdb.set_trace()
这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb
,然后,在可能出错的地方放一个pdb.set_trace()
,就可以设置一个断点:
# err.py
import pdb
s = ‘0‘
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print(10 / n)
运行代码,程序会自动在pdb.set_trace()
暂停并进入pdb调试环境,可以用命令p
查看变量,或者用命令c
继续运行:
$ python3 err.py
> /Users/michael/Github/learn-python3/samples/debug/err.py(7)<module>()
-> print(10 / n)
(Pdb) p n
0
(Pdb) c
Traceback (most recent call last):
File "err.py", line 7, in <module>
print(10 / n)
ZeroDivisionError: division by zero
这个方式比直接启动pdb单步调试效率要高很多,但也高不到哪去。
IDE
如果要比较爽地设置断点、单步执行,就需要一个支持调试功能的IDE。目前比较好的Python IDE有PyCharm:
http://www.jetbrains.com/pycharm/
另外,Eclipse加上pydev插件也可以调试Python程序。
小结
写程序最痛苦的事情莫过于调试,程序往往会以你意想不到的流程来运行,你期待执行的语句其实根本没有执行,这时候,就需要调试了。
虽然用IDE调试起来比较方便,但是最后你会发现,logging才是终极武器。
单元测试
如果你听说过“测试驱动开发”(TDD:Test-Driven Development),单元测试就不陌生。单元测试是用来对一个模块、一个函数或者一个类来进行正确性检验的测试工作。
比如对函数abs()
,我们可以编写出以下几个测试用例:
-
输入正数,比如
1
、1.2
、0.99
,期待返回值与输入相同; -
输入负数,比如
-1
、-1.2
、-0.99
,期待返回值与输入相反; -
输入
0
,期待返回0
; -
输入非数值类型,比如
None
、[]
、{}
,期待抛出TypeError
。
把上面的测试用例放到一个测试模块里,就是一个完整的单元测试。
如果单元测试通过,说明我们测试的这个函数能够正常工作。如果单元测试不通过,要么函数有bug,要么测试条件输入不正确,总之,需要修复使单元测试能够通过。
单元测试通过后有什么意义呢?如果我们对abs()
函数代码做了修改,只需要再跑一遍单元测试,如果通过,说明我们的修改不会对abs()
函数原有的行为造成影响,如果测试不通过,说明我们的修改与原有行为不一致,要么修改代码,要么修改测试。
这种以测试为驱动的开发模式最大的好处就是确保一个程序模块的行为符合我们设计的测试用例。在将来修改的时候,可以极大程度地保证该模块行为仍然是正确的。
我们来编写一个Dict
类,这个类的行为和dict
一致,但是可以通过属性来访问,用起来就像下面这样:
>>> d = Dict(a=1, b=2)
>>> d[‘a‘]
1
>>> d.a
1
mydict.py
代码如下:
class Dict(dict):
def __init__(self, **kw):
super().__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"‘Dict‘ object has no attribute ‘%s‘" % key)
def __setattr__(self, key, value):
self[key] = value
为了编写单元测试,我们需要引入Python自带的unittest
模块,编写mydict_test.py
如下:
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b=‘test‘)
self.assertEqual(d.a, 1)
self.assertEqual(d.b, ‘test‘)
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d[‘key‘] = ‘value‘
self.assertEqual(d.key, ‘value‘)
def test_attr(self):
d = Dict()
d.key = ‘value‘
self.assertTrue(‘key‘ in d)
self.assertEqual(d[‘key‘], ‘value‘)
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError):
value = d[‘empty‘]
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty
编写单元测试时,我们需要编写一个测试类,从unittest.TestCase
继承。
以test
开头的方法就是测试方法,不以test
开头的方法不被认为是测试方法,测试的时候不会被执行。
对每一类测试都需要编写一个test_xxx()
方法。由于unittest.TestCase
提供了很多内置的条件判断,我们只需要调用这些方法就可以断言输出是否是我们所期望的。最常用的断言就是assertEqual()
:
self.assertEqual(abs(-1), 1) # 断言函数返回的结果与1相等
另一种重要的断言就是期待抛出指定类型的Error,比如通过d[‘empty‘]
访问不存在的key时,断言会抛出KeyError
:
with self.assertRaises(KeyError):
value = d[‘empty‘]
而通过d.empty
访问不存在的key时,我们期待抛出AttributeError
:
with self.assertRaises(AttributeError):
value = d.empty
运行单元测试
一旦编写好单元测试,我们就可以运行单元测试。最简单的运行方式是在mydict_test.py
的最后加上两行代码:
if __name__ == ‘__main__‘:
unittest.main()
这样就可以把mydict_test.py
当做正常的python脚本运行:
$ python3 mydict_test.py
另一种方法是在命令行通过参数-m unittest
直接运行单元测试:
$ python3 -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s
OK
这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试。
setUp与tearDown
可以在单元测试中编写两个特殊的setUp()
和tearDown()
方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。
setUp()
和tearDown()
方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()
方法中连接数据库,在tearDown()
方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:
class TestDict(unittest.TestCase):
def setUp(self):
print(‘setUp...‘)
def tearDown(self):
print(‘tearDown...‘)
可以再次运行测试看看每个测试方法调用前后是否会打印出setUp...
和tearDown...
。
小结
单元测试可以有效地测试某个程序模块的行为,是未来重构代码的信心保证。
单元测试的测试用例要覆盖常用的输入组合、边界条件和异常。
单元测试代码要非常简单,如果测试代码太复杂,那么测试代码本身就可能有bug。
单元测试通过了并不意味着程序就没有bug了,但是不通过程序肯定有bug。
文档测试
如果你经常阅读Python的官方文档,可以看到很多文档都有示例代码。比如re模块就带了很多示例代码:
>>> import re
>>> m = re.search(‘(?<=abc)def‘, ‘abcdef‘)
>>> m.group(0)
‘def‘
可以把这些示例代码在Python的交互式环境下输入并执行,结果与文档中的示例代码显示的一致。
这些代码与其他说明可以写在注释中,然后,由一些工具来自动生成文档。既然这些代码本身就可以粘贴出来直接运行,那么,可不可以自动执行写在注释中的这些代码呢?
答案是肯定的。
当我们编写注释时,如果写上这样的注释:
def abs(n):
‘‘‘
Function to get absolute value of number.
Example:
>>> abs(1)
1
>>> abs(-1)
1
>>> abs(0)
0
‘‘‘
return n if n >= 0 else (-n)
无疑更明确地告诉函数的调用者该函数的期望输入和输出。
并且,Python内置的“文档测试”(doctest)模块可以直接提取注释中的代码并执行测试。
doctest严格按照Python交互式命令行的输入和输出来判断测试结果是否正确。只有测试异常的时候,可以用...
表示中间一大段烦人的输出。
让我们用doctest来测试上次编写的Dict
类:
# mydict2.py
class Dict(dict):
‘‘‘
Simple dict but also support access as x.y style.
>>> d1 = Dict()
>>> d1[‘x‘] = 100
>>> d1.x
100
>>> d1.y = 200
>>> d1[‘y‘]
200
>>> d2 = Dict(a=1, b=2, c=‘3‘)
>>> d2.c
‘3‘
>>> d2[‘empty‘]
Traceback (most recent call last):
...
KeyError: ‘empty‘
>>> d2.empty
Traceback (most recent call last):
...
AttributeError: ‘Dict‘ object has no attribute ‘empty‘
‘‘‘
def __init__(self, **kw):
super(Dict, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"‘Dict‘ object has no attribute ‘%s‘" % key)
def __setattr__(self, key, value):
self[key] = value
if __name__==‘__main__‘:
import doctest
doctest.testmod()
运行python3 mydict2.py
:
$ python3 mydict2.py
什么输出也没有。这说明我们编写的doctest运行都是正确的。如果程序有问题,比如把__getattr__()
方法注释掉,再运行就会报错:
$ python3 mydict2.py
**********************************************************************
File "/Users/michael/Github/learn-python3/samples/debug/mydict2.py", line 10, in __main__.Dict
Failed example:
d1.x
Exception raised:
Traceback (most recent call last):
...
AttributeError: ‘Dict‘ object has no attribute ‘x‘
**********************************************************************
File "/Users/michael/Github/learn-python3/samples/debug/mydict2.py", line 16, in __main__.Dict
Failed example:
d2.c
Exception raised:
Traceback (most recent call last):
...
AttributeError: ‘Dict‘ object has no attribute ‘c‘
**********************************************************************
1 items had failures:
2 of 9 in __main__.Dict
***Test Failed*** 2 failures.
注意到最后3行代码。当模块正常导入时,doctest不会被执行。只有在命令行直接运行时,才执行doctest。所以,不必担心doctest会在非测试环境下执行。
以上是关于python基础之异常处理的主要内容,如果未能解决你的问题,请参考以下文章