生成器
通过列表生成式(比如说[x * x for x in range(10)]
),我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list
,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator
。
生成器只有在调用的时候才能生成数据 只记录当前位置
要创建一个generator
,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator
:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list
,而g
是一个generator
。
我们可以直接打印出list
的每一个元素,但我们怎么打印出generator
的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator
的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
我们讲过,generator
保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator
也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
所以,我们创建了一个generator
后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator
非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return ‘done‘
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b)# t是一个tuple
a = t[0]
b = t[1]
但不必显式写出临时变量t
就可以赋值。
上面的函数可以输出斐波那契数列的前N
个数:
>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator
。
也就是说,上面的函数和generator
仅一步之遥。要把fib函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max):
n,a,b = 0,0,1
while n < max:
#print(b)
yield b
a,b = b,a+b
n += 1
return ‘done‘
这就是定义generator
的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator
:
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
这里,最难理解的就是generator
和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator
的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
data = fib(10)
print(data)
print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
#输出
<generator object fib at 0x101be02b0>
1
1
干点别的事
2
3
5
8
13
在上面fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator
后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
>>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8
但是用for
循环调用generator
时,发现拿不到generator
的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print(‘g:‘, x)
... except StopIteration as e:
... print(‘Generator return value:‘, e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
还可通过yield
实现在单线程的情况下实现并发运算的效果
#_*_coding:utf-8_*_
__author__ = ‘Alex Li‘
import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield
print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
def producer(name):
c = consumer(‘A‘)
c2 = consumer(‘B‘)
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i)
producer("alex")
通过生成器实现协程并行运算