Python实现数值计算----牛顿插值法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python实现数值计算----牛顿插值法相关的知识,希望对你有一定的参考价值。

  拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集,

因此,通过寻找n个插值节点构造的的插值函数与n+1个插值节点构造的插值函数之间的关系,形成了牛顿插值法。推演牛顿插值法的方式是归纳法,也就是计算Ln(x)- Ln+1(x),并且从n=1开始不断的迭代来计算n+1时的插值函数。

 

  牛顿插值法的公式是:

技术分享

技术分享

  注意:在程序中我用W 代替 技术分享

  计算牛顿插值函数关键是要计算差商,n阶差商的表示方式如下:

                        技术分享

 

    关于差商我在这里并不讨论

  计算n阶差商的公式是这样:

技术分享

  很明显计算n阶差商需要利用到两个n-1阶差商,这样在编程的时候很容易想到利用递归来实现计算n阶差商,不过需要注意的是递归有栈溢出的潜在危险,在计算差商的时候

更是如此,每一层递归都会包含两个递归,递归的总次数呈满二叉树分布:

    技术分享

  这意味着递归次数会急剧增加:(。所以在具体的应用中还需要根据应用来改变思路或者优化代码

 

  废话少说,放码过来。

  首先写最关键的一步,也就是计算n阶差商:

"""
@brief:   计算n阶差商 f[x0, x1, x2 ... xn] 
@param:   xi   所有插值节点的横坐标集合                                                        o
@param:   fi   所有插值节点的纵坐标集合                                                      /   @return:  返回xi的i阶差商(i为xi长度减1)                                                     o     o
@notice:  a. 必须确保xi与fi长度相等                                                        / \\   /           b. 由于用到了递归,所以留意不要爆栈了.                                           o   o o   o
          c. 递归减递归(每层递归包含两个递归函数), 每层递归次数呈二次幂增长,总次数是一个满二叉树的所有节点数量(所以极易栈溢出)                                                                                     
"""
def get_order_diff_quot(xi = [], fi = []):
    if len(xi) > 2 and len(fi) > 2:
        return (get_order_diff_quot(xi[:len(xi) - 1], fi[:len(fi) - 1]) - get_order_diff_quot(xi[1:len(xi)], fi[1:len(fi)])) / float(xi[0] - xi[-1])
    return (fi[0] - fi[1]) / float(xi[0] - xi[1])

  看上面的牛顿插值函数公式,有了差商,还差技术分享

  这个就比较好实现了:

"""
@brief:  获得Wi(x)函数;
         Wi的含义举例 W1 = (x - x0); W2 = (x - x0)(x - x1); W3 = (x - x0)(x - x1)(x - x2)
@param:  i  i阶(i次多项式)
@param:  xi  所有插值节点的横坐标集合
@return: 返回Wi(x)函数
"""
def get_Wi(i = 0, xi = []):
    def Wi(x):
        result = 1.0
        for each in range(i):
            result *= (x - xi[each])
        return result
    return Wi

    

    OK, 牛顿插值法最重要的两部分都有了,下面就是将这两部分组合成牛顿插值函数,如果是c之类的语言就需要保存一些中间数据了,我利用了Python的闭包直接返回一个牛顿插值函数,闭包可以利用到它所处的函数之中的上下文数据。

"""
@brief: 获得牛顿插值函数
@
"""
def get_Newton_inter(xi = [], fi = []):
    def Newton_inter(x):
        result = fi[0]
        for i in range(2, len(xi)):
            result += (get_order_diff_quot(xi[:i], fi[:i]) * get_Wi(i-1, xi)(x))
        return result
    return Newton_inter

    上面这段代码就是对牛顿插值函数公式的翻译,注意get_Wi函数的参数是i-1,这个从技术分享函数的表达式可以找到原因。

 

  构造一些插值节点

 

 ‘‘‘ 插值节点, 这里用二次函数生成插值节点,每两个节点x轴距离位10 ‘‘‘
    sr_x = [i for i in range(-50, 51, 10)]
    sr_fx = [i**2 for i in sr_x]  

技术分享   

 

 获得牛顿插值函数

    Nx = get_Newton_inter(sr_x, sr_fx)            # 获得插值函数
    
    tmp_x = [i for i in range(-50, 51)]          # 测试用例
    tmp_y = [Nx(i) for i in tmp_x]               # 根据插值函数获得测试用例的纵坐标

  技术分享

 

完整代码:

# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 18:34:21 2016

@author: tete
@brief: 牛顿插值法
"""


import matplotlib.pyplot as plt

"""
@brief:   计算n阶差商 f[x0, x1, x2 ... xn] 
@param:   xi   所有插值节点的横坐标集合                                                        o
@param:   fi   所有插值节点的纵坐标集合                                                      /   @return:  返回xi的i阶差商(i为xi长度减1)                                                     o     o
@notice:  a. 必须确保xi与fi长度相等                                                        / \\   /           b. 由于用到了递归,所以留意不要爆栈了.                                           o   o o   o
          c. 递归减递归(每层递归包含两个递归函数), 每层递归次数呈二次幂增长,总次数是一个满二叉树的所有节点数量(所以极易栈溢出)                                                                                     
"""
def get_order_diff_quot(xi = [], fi = []):
    if len(xi) > 2 and len(fi) > 2:
        return (get_order_diff_quot(xi[:len(xi) - 1], fi[:len(fi) - 1]) - get_order_diff_quot(xi[1:len(xi)], fi[1:len(fi)])) / float(xi[0] - xi[-1])
    return (fi[0] - fi[1]) / float(xi[0] - xi[1])
    



"""
@brief:  获得Wi(x)函数;
         Wi的含义举例 W1 = (x - x0); W2 = (x - x0)(x - x1); W3 = (x - x0)(x - x1)(x - x2)
@param:  i  i阶(i次多项式)
@param:  xi  所有插值节点的横坐标集合
@return: 返回Wi(x)函数
"""
def get_Wi(i = 0, xi = []):
    def Wi(x):
        result = 1.0
        for each in range(i):
            result *= (x - xi[each])
        return result
    return Wi
    
    
    
    
"""
@brief: 获得牛顿插值函数
@
"""
def get_Newton_inter(xi = [], fi = []):
    def Newton_inter(x):
        result = fi[0]
        for i in range(2, len(xi)):
            result += (get_order_diff_quot(xi[:i], fi[:i]) * get_Wi(i-1, xi)(x))
        return result
    return Newton_inter
    
        

"""
demo:
"""
if __name__ == ‘__main__‘:   

    ‘‘‘ 插值节点, 这里用二次函数生成插值节点,每两个节点x轴距离位10 ‘‘‘
    sr_x = [i for i in range(-50, 51, 10)]
    sr_fx = [i**2 for i in sr_x]  
    
    Nx = get_Newton_inter(sr_x, sr_fx)            # 获得插值函数
    
    tmp_x = [i for i in range(-50, 51)]          # 测试用例
    tmp_y = [Nx(i) for i in tmp_x]               # 根据插值函数获得测试用例的纵坐标
       
    ‘‘‘ 画图 ‘‘‘
    plt.figure("I love china")
    ax1 = plt.subplot(111)
    plt.sca(ax1)
    plt.plot(sr_x, sr_fx, linestyle = ‘‘, marker=‘o‘, color=‘b‘)
    plt.plot(tmp_x, tmp_y, linestyle = ‘--‘, color=‘r‘)
    plt.show()

  

  

以上是关于Python实现数值计算----牛顿插值法的主要内容,如果未能解决你的问题,请参考以下文章

Python实现牛顿插值法(差商表)

[数值计算-14]:拉格朗日插值与Python代码实现

复化梯形求积分——用Python进行数值计算

5.4 数值分析: 牛顿插值多项式及余项

matlab中牛顿法编程

牛顿法、黄金分割法、二次插值法实验(最优化1)