Python调用OpenCV实现摄像头的运动检测[树莓派版]
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python调用OpenCV实现摄像头的运动检测[树莓派版]相关的知识,希望对你有一定的参考价值。
[硬件环境]
RaspberryPi 3代B型(英国版)
[软件环境]
操作系统:Raspbian
Python版本:2.7.3
Python库:
1.1) opencv-python(3.2.0.6)
[搭建过程]
OpenCV Python库:
1. pip安装
[相关代码(暂时未验证,去掉了作者原代码中的DROPBOX自动上传部分)]
pi_surveillance.py
# USAGE # python pi_surveillance.py --conf conf.json # import the necessary packages from pyimagesearch.tempimage import TempImage from picamera.array import PiRGBArray # picamera(CANT BE IMPORTED ON WINDOWS PLATFORM) from picamera import PiCamera # picamera(CANT BE IMPORTED ON WINDOWS PLATFORM) import argparse import warnings import datetime import imutils import json import time import cv2 # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-c", "--conf", required=True, help="path to the JSON configuration file") args = vars(ap.parse_args()) # filter warnings, load the configuration and initialize the Dropbox client warnings.filterwarnings("ignore") conf = json.load(open(args["conf"])) client = None # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = tuple(conf["resolution"]) camera.framerate = conf["fps"] rawCapture = PiRGBArray(camera, size=tuple(conf["resolution"])) # allow the camera to warmup, then initialize the average frame, last # uploaded timestamp, and frame motion counter print "[INFO] warming up..." time.sleep(conf["camera_warmup_time"]) avg = None lastUploaded = datetime.datetime.now() motionCounter = 0 # capture frames from the camera for f in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image and initialize # the timestamp and occupied/unoccupied text frame = f.array timestamp = datetime.datetime.now() text = "Unoccupied" # resize the frame, convert it to grayscale, and blur it frame = imutils.resize(frame, width=500) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # if the average frame is None, initialize it if avg is None: print "[INFO] starting background model..." avg = gray.copy().astype("float") rawCapture.truncate(0) continue # accumulate the weighted average between the current frame and # previous frames, then compute the difference between the current # frame and running average cv2.accumulateWeighted(gray, avg, 0.5) frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg)) # threshold the delta image, dilate the thresholded image to fill # in holes, then find contours on thresholded image thresh = cv2.threshold(frameDelta, conf["delta_thresh"], 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # loop over the contours for c in cnts: # if the contour is too small, ignore it if cv2.contourArea(c) < conf["min_area"]: continue # compute the bounding box for the contour, draw it on the frame, # and update the text (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) text = "Occupied" # draw the text and timestamp on the frame ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p") cv2.putText(frame, "Room Status: {}".format(text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # check to see if the room is occupied if text == "Occupied": # check to see if enough time has passed between uploads if (timestamp - lastUploaded).seconds >= conf["min_upload_seconds"]: # increment the motion counter motionCounter += 1 # check to see if the number of frames with consistent motion is # high enough if motionCounter >= conf["min_motion_frames"]: # check to see if dropbox sohuld be used if conf["use_dropbox"]: # write the image to temporary file t = TempImage() cv2.imwrite(t.path, frame) # upload the image to Dropbox and cleanup the tempory image print "[UPLOAD] {}".format(ts) path = "{base_path}/{timestamp}.jpg".format( base_path=conf["dropbox_base_path"], timestamp=ts) client.put_file(path, open(t.path, "rb")) t.cleanup() # update the last uploaded timestamp and reset the motion # counter lastUploaded = timestamp motionCounter = 0 # otherwise, the room is not occupied else: motionCounter = 0 # check to see if the frames should be displayed to screen if conf["show_video"]: # display the security feed cv2.imshow("Security Feed", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key is pressed, break from the lop if key == ord("q"): break # clear the stream in preparation for the next frame rawCapture.truncate(0)
conf.json
{
"show_video": true,
"use_dropbox": true,
"dropbox_key": "YOUR_DROPBOX_KEY",
"dropbox_secret": "YOUR_DROPBOX_SECRET",
"dropbox_base_path": "YOUR_DROPBOX_APP_PATH",
"min_upload_seconds": 3.0,
"min_motion_frames": 8,
"camera_warmup_time": 2.5,
"delta_thresh": 5,
"resolution": [640, 480],
"fps": 16,
"min_area": 5000
}
tempimage.py
# import the necessary packages import uuid import os class TempImage: def __init__(self, basePath="./", ext=".jpg"): # construct the file path self.path = "{base_path}/{rand}{ext}".format(base_path=basePath, rand=str(uuid.uuid4()), ext=ext) def cleanup(self): # remove the file os.remove(self.path)
以上是关于Python调用OpenCV实现摄像头的运动检测[树莓派版]的主要内容,如果未能解决你的问题,请参考以下文章
通过网络摄像头实时采集视频,采用OpenCV识别运动物体,实现有运动物体经过时存储,没有时则不存储.