Tensorflow官方文档word2vec_basic.py中文注释

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow官方文档word2vec_basic.py中文注释相关的知识,希望对你有一定的参考价值。

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic word2vec example."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import math
import os
import random
import zipfile

import numpy as np
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

# Step 1: Download the data.
url = http://mattmahoney.net/dc/

# 下载文件
def maybe_download(filename, expected_bytes):
  """Download a file if not present, and make sure it‘s the right size."""
  if not os.path.exists(filename):
    filename, _ = urllib.request.urlretrieve(url + filename, filename)
  statinfo = os.stat(filename)
  if statinfo.st_size == expected_bytes:
    print(Found and verified, filename)
  else:
    print(statinfo.st_size)
    raise Exception(
        Failed to verify  + filename + . Can you get to it with a browser?)
  return filename

filename = maybe_download(text8.zip, 31344016)


# 解压并读取文件
def read_data(filename):
  """Extract the first file enclosed in a zip file as a list of words."""
  with zipfile.ZipFile(filename) as f:
    data = tf.compat.as_str(f.read(f.namelist()[0])).split()
  return data

vocabulary = read_data(filename)
print(Data size, len(vocabulary))

# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 50000
# 建立数据集,words是所有单词的列表,n_words是想建的字典中单词的个数 def build_dataset(words, n_words): """Process raw inputs into a dataset."""
#将所有低频单词设为UNK,个数先设为-1
count = [[UNK, -1]]
#将words集合中的单词按频数排序,将频率最高的前n_words-1个单词以及他们的出现的个数按顺序输出到count中,将频数排在n_words-1之后的单词设为UNK。同时,count的规律为索引越小,单词出现的频率越高 count.extend(collections.Counter(words).most_common(n_words
- 1))
#建一个字典dict dictionary
= dict() for word, _ in count:
#对count中所有单词进行编号,赋予ID,由0开始,保存在字典dict中 dictionary[word]
= len(dictionary)
#建一个列表 data
= list() unk_count = 0

#对原words列表中的单词使用字典中的ID进行编号,即将单词转换成整数,储存在data列表中,同时对UNK进行计数
for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary[‘UNK‘] unk_count += 1 data.append(index)
#记录UNK个数 count[0][
1] = unk_count
#将dictionary中的数据反转,即可以通过ID找到对应的单词,保存在reversed_dictionary中 reversed_dictionary
= dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary data, count, dictionary, reverse_dictionary = build_dataset(vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory.

#输出频数最高的前5个单词
print(Most common words (+UNK), count[:5])
print(Sample data, data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model.

#这个函数的功能是对数据data中的每个单词,分别与前一个单词和后一个单词生成一个batch,即[data[1],data[0]]和[data[1],data[2]],其中当前单词data[1]存在batch中,前后单词存在labels中
def generate_batch(batch_size, num_skips, skip_window): global data_index #全局索引,在data中的位置 assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) #建一个batch大小的数组,保存任意单词 labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) #建一个(batch,1)大小的二位数组,保存任意单词前一个或者后一个单词,从而形成一个pair span = 2 * skip_window + 1 # #窗的大小,为3,结构为[ skip_window target skip_window ] buffer = collections.deque(maxlen=span) #建立一个结构为双向队列的缓冲区,大小不超过3 if data_index + span > len(data): #如果索引超过了数据长度,则重新从数据头部开始 data_index = 0 buffer.extend(data[data_index:data_index + span]) #将数据index到index+3段赋值给buffer,大小刚好为span data_index += span #将index向后移3位 -----------------------------------------------------------------(1) for i in range(batch_size // num_skips): #128//2 四舍五入 target = skip_window # 将target赋值为1,即当前单词 targets_to_avoid = [skip_window] #将target存入targets_to_avoid中,避免重复存入 for j in range(num_skips): while target in targets_to_avoid: #选出还没出现在targets_to_avoid中的单词索引 target = random.randint(0, span - 1) targets_to_avoid.append(target) #存入targets_to_avoid batch[i * num_skips + j] = buffer[skip_window] #在batch中存入当前单词 labels[i * num_skips + j, 0] = buffer[target] #在labels中存入当前单词前一个单词或者后一个单词 if data_index == len(data): # 如果到达数据尾部 buffer[:] = data[:span] #重新开始,将数据前三位存入buffer中,也就是说,是从数据第二个单词开始的 data_index = span else: buffer.append(data[data_index]) #如果没有越界,则在buffer尾部插入一个新单词,同时挤出buffer中第一个单词,相当于是span的范围向后移了一位 data_index += 1 #当前单词的索引向后移一位 # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) #保证index不超过数据的总长度,同时向前移回3位,因为(1)时向后移了3为 return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], ->, labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device(/cpu:0): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print(Initialized) average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print(Average loss at step , step, : , average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = Nearest to %s: % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = %s %s, % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename=tsne.png): assert low_dim_embs.shape[0] >= len(labels), More labels than embeddings plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords=offset points, ha=right, va=bottom) plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init=pca, n_iter=5000, method=exact) plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print(Please install sklearn, matplotlib, and scipy to show embeddings.)

 
















以上是关于Tensorflow官方文档word2vec_basic.py中文注释的主要内容,如果未能解决你的问题,请参考以下文章

Win10上安装TensorFlow(官方文档翻译)

TensorFlow官方文档入门笔记[一]

tensorflow官方文档中的sub 和mul中的函数已经在API中改名了

在 Ubuntu 上安装 TensorFlow (官方文档的翻译)

TensorFlow官方文档MNIST初学笔记[二]

Tensorflow官方文档word2vec_basic.py中文注释