使用牛顿-拉弗森法定义平方根函数(Newton-Raphson method Square Root Python)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用牛顿-拉弗森法定义平方根函数(Newton-Raphson method Square Root Python)相关的知识,希望对你有一定的参考价值。

牛顿法(Newton’s method)又称为牛顿-拉弗森法(Newton-Raphson method),是一种近似求解实数方程式的方法。(注:Joseph Raphson在1690年出版的《一般方程分析》中提出了后来被称为“牛顿-拉弗森法”的数学方法,牛顿于1671年写成的著作《流数法》中亦包括了这个方法,但该书在1736年才出版。)

 

之前的一篇博客中提到的二分法可以求解方根,而使用牛顿迭代法可以更快地解出方根。现在,人们使用的计算器里面大多数都是运用的牛顿迭代法。

 

 技术分享

假设n=x2,现在需要求n的方根,n=x2亦即x2-n=0,把它转换成方程式f(x)=x2-n,如上图所示。

选取技术分享作为求解方根的初始近似值,过点技术分享作切线T,T的方程为技术分享,求出T与x轴交点的横坐标技术分享,称x1为n方根的一次近似值。

过点技术分享再作切线,并求得该切线与x轴交点的横坐标技术分享,称技术分享为n方根的二次近似值。

以此类推,得到牛顿法的迭代公式:技术分享 (注:f‘(xn)是导数,这里也就是切线的斜率,数值是2*xn)。

猜测值在经过多次迭代后会越来越接近曲线的根,用数学术语来说就是,这个方程式在技术分享的时候收敛,故能求得近似n方根的值。

 

总的图示如下: 

 技术分享

 

代码如下:

def sqrt_NR(n):
‘‘‘为了方便起见,先假设n为正数‘‘‘
guess=n/2 # 设置初始猜测值为n的一半
diff=guess**2-n # f(Xn)
count=1 # 设置猜测次数起始值为1
while abs(diff)>0.001 and count<100: # 当猜测值的平方和n本身的差值无限接近误差值时,循环才会停止;同时设置猜测次数不超过100次
guess=guess-diff/(2*guess) # 根据牛顿法的迭代公式Xn+1=Xn-f(Xn)/f‘(Xn),将上一次的猜测值减去f(Xn)/导数的值赋予新的猜测值
diff=guess**2-n # 更新f(Xn)
count+=1 # 猜测次数每次增加1
return guess
 
调用此函数试一下:
print(sqrt_NR(8))

 

运行结果如下:

2.8284313725490198

 

二分法和牛顿法对比:

把这两个函数的eplison都设置为0.01,增加显示count

运行:

print(“二分法: ", sqrt_bi(8))
print("牛顿法: ", sqrt_NR(8))

 结果如下:

二分法:    (2.828369140625, 15)

牛顿法:    (2.8284313725490198, 4)

 

是不是牛顿法比二分法快多了?

 

参考:麻省理工学院公开课:计算机科学及编程导论  (第6课)

 










以上是关于使用牛顿-拉弗森法定义平方根函数(Newton-Raphson method Square Root Python)的主要内容,如果未能解决你的问题,请参考以下文章

牛顿迭代法

实现 sqrt(x):二分查找法和牛顿法

牛顿迭代法与一道经典编程问题

优化器--牛顿法总结

Python代码中的数学之美:用牛顿逼近法计算2的算术平方根

Python代码中的数学之美:用牛顿逼近法计算2的算术平方根