转录组数据分析RNA-seq

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了转录组数据分析RNA-seq相关的知识,希望对你有一定的参考价值。

参考技术A

转录组学(transcriptomics)的研究对象是全基因组尺度下所有转录本(transcript),即转录组(transcriptome)

将荧光标记的cDNA制成微阵列探针来测定样本中特定转录本含量。又称为 基因芯片(Gene Chip)、微阵列(Microarry)。

获取表达量的步骤:
提取RNA -> 反转录 (->扩增)->标记->杂交->扫描->获得原始数据
局限性:
• 只能检测已知或;确定性的序列
• 无法检测新发现的,未放置到芯片上的基因
• 有部分探针的信号可能会收到非特异性杂交或个体序列差异的影响

基于高通量二代测序技术的转录组学研究方法。
特点:
高通量、低成本;不依赖已知转录本探针,可以测全转录组;对于低表达丰度的转录本灵敏
度高;以reads数量腐酸表达,比芯片的荧光信号更为精确。
应用和最新进展

依据文库要求检查完整性分值,如果不合格将不适合建库测序。一些特殊文库对RNA提取要求很高,如全长转录组文库,需要特殊提取流
程保证RNA 完整性。

需要的数据:参考基因组数据fasta、GFF注释信息、双端测序的fastq文件
我这里用的是普通栽培稻( Oryza sativa L.)的参考基因组和、GFF文件和SRR17439319数据。
参考步骤: https://blog.csdn.net/sunchengquan/article/details/79781366
注意:配置时,需要在bin目录下执行 ./vdb-config --interactive ,然后弹出一大堆乱七八糟的之后,按X退出即可。再执行./fastq-dump,若没有报错,而是帮助信息的话即可以使用。

测序数据分析前需要经过数据预处理,并检查数据GC含量、序列重复成俗、是否存在接头等。

在质控后,再质检一次,对比看看有什么不同。

将 reads 匹配到参考基因组或转录组的相应位置上
• 非剪接比对:转录组
Bowtie、BWA
• 剪接比对:参考基因组
STAR、HISAT、Topha
对鉴定SNP做了优化: GSNAP、MapSplice等

① 建立基因组索引

②利用注释文件比对

没有注释文件的比对方法

③ SAM 文件处理
使用 samtools 对 SAM 文件排序并转化为 BAM 文件。samtools是一个用于操作sam和bam文件的工具合集,包含有许多命令。

④比对结果可视化
比对结果使用 IGV 、Genome Maps 和Sacant 等可视化查看。
例如:IGV 通过读入基因组和注释信息以及BAM 文件展示比对结果。
需要额外添加 BMA 的索引: samtools index test_sorted.bam test_sorted.bai

⑤比对结果评估
比对结果评估工具:RSeQC、Qualimap

计算FPKM

-p 线程数
-G 参考基因组注释
-e 只估计已给参考基因组注释的基因丰度
-A 基因丰度估计输出文件
-o 输出文件

以上是关于转录组数据分析RNA-seq的主要内容,如果未能解决你的问题,请参考以下文章

RNA-seq名词解释(1)

RNA-seq分析软件“海底捞“--RNACocktail

有参转录组分析

转录组分析(8) - 可变剪接

HISAT2,StringTie,Ballgown处理转录组数据

单细胞转录组测序知识一隅