Python练习题 042:Project Euler 014:最长的考拉兹序列
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python练习题 042:Project Euler 014:最长的考拉兹序列相关的知识,希望对你有一定的参考价值。
本题来自 Project Euler 第14题:https://projecteuler.net/problem=14
‘‘‘ Project Euler: Problem 14: Longest Collatz sequence The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. Answer: 837799(共有525个步骤) ‘‘‘ import time startTime = time.clock() def f(x): c = 0 #计算考拉兹序列的个数 while x != 1: if x%2 == 0: #若为偶数 x = x//2 c += 1 else: #若为奇数 x = x*3+1 c += 1 if x == 1: c += 1 #数字1也得算上 return c chainItemCount = 0 startingNumber = 0 for i in range(1, 1000000): t = f(i) if chainItemCount < t: chainItemCount = t startingNumber = i print(‘The number %s produces the longest chain with %s items‘ % (startingNumber, chainItemCount)) print(‘Time used: %.2d‘ % (time.clock()-startTime))
互动百科说了,考拉兹猜想--又称为3n+1猜想、角谷猜想、哈塞猜想、乌拉姆猜想或叙拉古猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
判断条件很清楚,所以解题思路也很清晰:把 1-999999 之间的所有数字都拿来判断,计算每个数字分解到1所经历的步骤数,拥有最大步骤数的那个数字(Starting Number)即为解。
解这题,我的破电脑花了29秒。我隐约感觉这题应该有更好的解法,比如我很不喜欢的递归之类的……
以上是关于Python练习题 042:Project Euler 014:最长的考拉兹序列的主要内容,如果未能解决你的问题,请参考以下文章
Python练习题 043:Project Euler 015:方格路径
Python练习题 047:Project Euler 020:阶乘结果各数字之和
Python练习题 041:Project Euler 013:求和取前10位数值
Python练习题 038:Project Euler 010:两百万以内所有素数之和