Python练习题 048:Project Euler 021:10000以内所有亲和数之和

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python练习题 048:Project Euler 021:10000以内所有亲和数之和相关的知识,希望对你有一定的参考价值。

本题来自 Project Euler 第21题:https://projecteuler.net/problem=21

‘‘‘
Project Euler: Problem 21: Amicable numbers
Let d(n) be defined as the sum of proper divisors of n
(numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair
and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110;
therefore d(220) = 284.
The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
Answer: 31626
‘‘‘

def d(n):  #计算数字n所有真因数之和
    res = 0
    for i in range(1, n//2+1):
        if n/i == float(n//i):
            res += i
    return(res)

lst = []  #亲和数列表
for i in range(1, 10000):
    a = d(i)
    b = d(a)
    if b == i and b != a:
        lst.append(i)

res = 0  #所有亲和数之和
for i in range(len(lst)):
    res += lst[i]
print(res)

首先需要明确两个数学概念:

  • 真因数(proper divisor):除去数字本身的所有因数(不要求是素数)。比如:12的所有真因数是:1、2、3、4、6
  • 亲和数(amicable number):先求出数字n所有真因数之和a,然后再求出数字a所有真因数之和b。如果 a != b 且 n == b,则 a、b、n都是亲和数

概念弄清楚了,接下来就好办了。既是求10000以内所有亲和数之和,当然首先得找出所有亲和数(汇总为列表 lst)。而想找出亲和数,首先得定义出函数 d(n),用来计算数字n的所有真因数之和。这之后,只要用之前所述的两个条件将10000以内所有数字遍历,就能找出所有亲和数了。

思路虽然清晰,但实际计算起来,还是费了些时间。想必是有更优的算法可以计算真因数之和吧,但……算了,我这数学渣,能算出来就不错了,不指望有啥好算法了……

以上是关于Python练习题 048:Project Euler 021:10000以内所有亲和数之和的主要内容,如果未能解决你的问题,请参考以下文章

Python练习题 047:Project Euler 020:阶乘结果各数字之和

Python练习题 041:Project Euler 013:求和取前10位数值

Python练习题 042:Project Euler 014:最长的考拉兹序列

Python练习题 038:Project Euler 010:两百万以内所有素数之和

Python练习题 046:Project Euler 019:每月1日是星期天

Python练习题 034:Project Euler 006:和平方与平方和之差