Python中的进程池和线程池
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python中的进程池和线程池相关的知识,希望对你有一定的参考价值。
0.concurrent.futures库
参考:https://docs.python.org/3/library/concurrent.futures.html
之前我们使用多线程(threading)和多进程(multiprocessing)完成常规的需求: 在启动的时候start、jon等步骤不能省,复杂的需要还要用1-2个队列。 随着需求越来越复杂,如果没有良好的设计和抽象这部分的功能层次,代码量越多调试的难度就越大。 有没有什么好的方法把这些步骤抽象一下呢,让我们不关注这些细节,轻装上阵呢? 答案是:有的, 从Python3.2开始一个叫做concurrent.futures被纳入了标准库; 而在Python2它属于第三方的futures库,需要手动安装: pip install futures The concurrent.futures module provides a high-level interface for asynchronously executing callables. The asynchronous execution can be be performed by threads using ThreadPoolExecutor or seperate processes using ProcessPoolExecutor. Both implement the same interface, which is defined by the abstract Executor class.
1.进程池
- 串行执行的情况:
import math,time PRIMES = [ 112272535095293, 112582705942171, 112272535095293, 115280095190773, 115797848077099, 1099726899285419] def is_prime(n): if n % 2 == 0: return False sqrt_n = int(math.floor(math.sqrt(n))) for i in range(3, sqrt_n + 1, 2): if n % i == 0: return False return True def main(): for num in PRIMES: print(‘%d is prime: %s‘ % (num, is_prime(num))) if __name__ == ‘__main__‘: start_time = time.time() main() end_time = time.time() print(‘Run time is %s‘ % (end_time-start_time)) ---结果--- 112272535095293 is prime: True 112582705942171 is prime: True 112272535095293 is prime: True 115280095190773 is prime: True 115797848077099 is prime: True 1099726899285419 is prime: False Run time is 3.9570000171661377
- 使用multiprocessing.Pool的情况:
import math,time from multiprocessing import Pool PRIMES = [ 112272535095293, 112582705942171, 112272535095293, 115280095190773, 115797848077099, 1099726899285419] def is_prime(n): if n % 2 == 0: return False sqrt_n = int(math.floor(math.sqrt(n))) for i in range(3, sqrt_n + 1, 2): if n % i == 0: return False return True def main(): pool = Pool() res_l = [] for prime in PRIMES: res = pool.apply_async(func=is_prime,args=(prime,)) res_l.append(res) pool.close() pool.join() for number, prime in zip(PRIMES, res_l): print(‘%d is prime: %s‘ % (number, prime.get())) if __name__ == ‘__main__‘: start_time = time.time() main() end_time = time.time() print(‘Run time is %s‘ % (end_time-start_time)) ---结果--- 112272535095293 is prime: True 112582705942171 is prime: True 112272535095293 is prime: True 115280095190773 is prime: True 115797848077099 is prime: True 1099726899285419 is prime: False Run time is 2.687000036239624
- 使用进程池 concurrent.futures.ProcessPoolExecutor的情况:
- 参考:http://pythonhosted.org/futures/#concurrent.futures.ProcessPoolExecutor
ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned. class concurrent.futures.ProcessPoolExecutor(max_workers=None) Executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given then as many worker processes will be created as the machine has processors.
- ProcessPoolExecutor 本质上也是调用multiprocessing模块
import math,time from concurrent import futures PRIMES = [ 112272535095293, 112582705942171, 112272535095293, 115280095190773, 115797848077099, 1099726899285419] def is_prime(n): if n % 2 == 0: return False sqrt_n = int(math.floor(math.sqrt(n))) for i in range(3, sqrt_n + 1, 2): if n % i == 0: return False return True def main(): with futures.ProcessPoolExecutor() as executor: for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)): print(‘%d is prime: %s‘ % (number, prime)) if __name__ == ‘__main__‘: start_time = time.time() main() end_time = time.time() print(‘Run time is %s‘ % (end_time-start_time)) ---结果--- 112272535095293 is prime: True 112582705942171 is prime: True 112272535095293 is prime: True 115280095190773 is prime: True 115797848077099 is prime: True 1099726899285419 is prime: False Run time is 2.482999801635742
2.线程池
- 参考:http://pythonhosted.org/futures/#threadpoolexecutor-objects
The ThreadPoolExecutor class is an Executor subclass that uses a pool of threads to execute calls asynchronously. class concurrent.futures.ThreadPoolExecutor(max_workers) Executes calls asynchronously using at pool of at most max_workers threads.
- 串行执行的情况:
import urllib.request import time URLS = [ ‘http://www.foxnews.com/‘, ‘https://www.stanford.edu/‘, ‘http://www.mit.edu/‘, ‘https://www.python.org/‘, ‘https://www.yahoo.com/‘, ‘http://www.ox.ac.uk/‘ ] def load_url(url, timeout): return urllib.request.urlopen(url, timeout=timeout).read() start_time = time.time() for url in URLS: print(‘%r page is %d bytes‘ % (url, len(load_url(url,60)))) end_time = time.time() print("Run time is %s" % (end_time-start_time)) ---结果--- ‘http://www.foxnews.com/‘ page is 71131 bytes ‘https://www.stanford.edu/‘ page is 68595 bytes ‘http://www.mit.edu/‘ page is 21405 bytes ‘https://www.python.org/‘ page is 47701 bytes ‘https://www.yahoo.com/‘ page is 434510 bytes ‘http://www.ox.ac.uk/‘ page is 93411 bytes Run time is 5.068000078201294
- 使用多线程的情况:
import urllib.request import time from threading import Thread URLS = [ ‘http://www.foxnews.com/‘, ‘https://www.stanford.edu/‘, ‘http://www.mit.edu/‘, ‘https://www.python.org/‘, ‘https://www.yahoo.com/‘, ‘http://www.ox.ac.uk/‘ ] def load_url(url, timeout): res = urllib.request.urlopen(url, timeout=timeout).read() print(‘%r page is %d bytes‘ % (url, len(res))) t_l = [] start_time = time.time() for url in URLS: t = Thread(target=load_url,args=(url,60,)) t_l.append(t) t.start() for t in t_l: t.join() end_time = time.time() print("Run time is %s" % (end_time-start_time)) ---结果--- ‘http://www.mit.edu/‘ page is 21403 bytes ‘http://www.foxnews.com/‘ page is 71735 bytes ‘https://www.python.org/‘ page is 47701 bytes ‘https://www.stanford.edu/‘ page is 69130 bytes ‘http://www.ox.ac.uk/‘ page is 93411 bytes ‘https://www.yahoo.com/‘ page is 446715 bytes Run time is 2.6540000438690186
- 使用线程池 concurrent.futures.ThreadPoolExecutor的情况:
from concurrent import futures import urllib.request import time URLS = [ ‘http://www.foxnews.com/‘, ‘https://www.stanford.edu/‘, ‘http://www.mit.edu/‘, ‘https://www.python.org/‘, ‘https://www.yahoo.com/‘, ‘http://www.ox.ac.uk/‘ ] def load_url(url, timeout): return urllib.request.urlopen(url, timeout=timeout).read() start_time = time.time() with futures.ThreadPoolExecutor(max_workers=5) as executor: future_to_url = dict((executor.submit(load_url, url, 60), url) for url in URLS) for future in futures.as_completed(future_to_url): url = future_to_url[future] if future.exception() is not None: print(‘%r generated an exception: %s‘ % (url,future.exception())) else: print(‘%r page is %d bytes‘ % (url, len(future.result()))) end_time = time.time() print("Run time is %s" % (end_time-start_time)) ---结果--- ‘http://www.mit.edu/‘ page is 21405 bytes ‘http://www.foxnews.com/‘ page is 71197 bytes ‘https://www.python.org/‘ page is 47701 bytes ‘http://www.ox.ac.uk/‘ page is 93411 bytes ‘https://www.yahoo.com/‘ page is 444854 bytes ‘https://www.stanford.edu/‘ page is 68595 bytes Run time is 2.497999906539917
备注:由于网络不稳定因素,所以Run time仅作为参考值;
以上是关于Python中的进程池和线程池的主要内容,如果未能解决你的问题,请参考以下文章
2020Python修炼记python并发编程补充—进程池和线程池