knn的python代码

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了knn的python代码相关的知识,希望对你有一定的参考价值。

import heapq
import random

class Classifier:
def __init__(self, bucketPrefix, testBucketNumber, dataFormat, k):

""" a classifier will be built from files with the bucketPrefix
excluding the file with textBucketNumber. dataFormat is a string that
describes how to interpret each line of the data files. For example,
for the mpg data the format is:

"class num num num num num comment"
"""

self.medianAndDeviation = []
self.k = k
# reading the data in from the file

self.format = dataFormat.strip().split(‘\t‘)
self.data = []
# for each of the buckets numbered 1 through 10:
for i in range(1, 11):
# if it is not the bucket we should ignore, read in the data
if i != testBucketNumber:
filename = "%s-%02i" % (bucketPrefix, i)
f = open(filename)
lines = f.readlines()
f.close()
for line in lines[1:]:
fields = line.strip().split(‘\t‘)
ignore = []
vector = []
for i in range(len(fields)):

if self.format[i] == ‘num‘:
vector.append(float(fields[i]))
elif self.format[i] == ‘comment‘:
ignore.append(fields[i])
elif self.format[i] == ‘class‘:
classification = fields[i]
self.data.append((classification, vector, ignore))
self.rawData = list(self.data)
# get length of instance vector
self.vlen = len(self.data[0][1])
# now normalize the data
for i in range(self.vlen):
self.normalizeColumn(i)

##################################################
###
### CODE TO COMPUTE THE MODIFIED STANDARD SCORE

def getMedian(self, alist):
"""return median of alist"""
if alist == []:
return []
blist = sorted(alist)
length = len(alist)
if length % 2 == 1:
# length of list is odd so return middle element
return blist[int(((length + 1) / 2) - 1)]
else:
# length of list is even so compute midpoint
v1 = blist[int(length / 2)]
v2 =blist[(int(length / 2) - 1)]
return (v1 + v2) / 2.0

def getAbsoluteStandardDeviation(self, alist, median):
"""given alist and median return absolute standard deviation"""
sum = 0
for item in alist:
sum += abs(item - median)
return sum / len(alist)


def normalizeColumn(self, columnNumber):
"""given a column number, normalize that column in self.data"""
# first extract values to list
col = [v[1][columnNumber] for v in self.data]
median = self.getMedian(col)
asd = self.getAbsoluteStandardDeviation(col, median)
#print("Median: %f ASD = %f" % (median, asd))
self.medianAndDeviation.append((median, asd))
for v in self.data:
v[1][columnNumber] = (v[1][columnNumber] - median) / asd


def normalizeVector(self, v):
"""We have stored the median and asd for each column.
We now use them to normalize vector v"""
vector = list(v)
for i in range(len(vector)):
(median, asd) = self.medianAndDeviation[i]
vector[i] = (vector[i] - median) / asd
return vector
###
### END NORMALIZATION
##################################################

def testBucket(self, bucketPrefix, bucketNumber):
"""Evaluate the classifier with data from the file
bucketPrefix-bucketNumber"""

filename = "%s-%02i" % (bucketPrefix, bucketNumber)
f = open(filename)
lines = f.readlines()
totals = {}
f.close()
for line in lines:
data = line.strip().split(‘\t‘)
vector = []
classInColumn = -1
for i in range(len(self.format)):
if self.format[i] == ‘num‘:
vector.append(float(data[i]))
elif self.format[i] == ‘class‘:
classInColumn = i
theRealClass = data[classInColumn]
#print("REAL ", theRealClass)
classifiedAs = self.classify(vector)
totals.setdefault(theRealClass, {})
totals[theRealClass].setdefault(classifiedAs, 0)
totals[theRealClass][classifiedAs] += 1
return totals

 

def manhattan(self, vector1, vector2):
"""Computes the Manhattan distance."""
return sum(map(lambda v1, v2: abs(v1 - v2), vector1, vector2))




def knn(self, itemVector):
"""returns the predicted class of itemVector using k
Nearest Neighbors"""
# changed from min to heapq.nsmallest to get the
# k closest neighbors
neighbors = heapq.nsmallest(self.k,[(self.manhattan(itemVector, item[1]), item)
for item in self.data])
# each neighbor gets a vote
results = {}
for neighbor in neighbors:
theClass = neighbor[1][0]
results.setdefault(theClass, 0)
results[theClass] += 1
resultList = sorted([(i[1], i[0]) for i in results.items()], reverse=True)
#get all the classes that have the maximum votes
maxVotes = resultList[0][0]
possibleAnswers = [i[1] for i in resultList if i[0] == maxVotes]
# randomly select one of the classes that received the max votes
answer = random.choice(possibleAnswers)
return( answer)

def classify(self, itemVector):
"""Return class we think item Vector is in"""
# k represents how many nearest neighbors to use
return(self.knn(self.normalizeVector(itemVector)))


def tenfold(bucketPrefix, dataFormat, k):
results = {}
for i in range(1, 11):
c = Classifier(bucketPrefix, i, dataFormat, k)
t = c.testBucket(bucketPrefix, i)
for (key, value) in t.items():
results.setdefault(key, {})
for (ckey, cvalue) in value.items():
results[key].setdefault(ckey, 0)
results[key][ckey] += cvalue

# now print results
categories = list(results.keys())
categories.sort()
print( "\n Classified as: ")
header = " "
subheader = " +"
for category in categories:
header += "% 2s " % category
subheader += "-----+"
print (header)
print (subheader)
total = 0.0
correct = 0.0
for category in categories:
row = " %s |" % category
for c2 in categories:
if c2 in results[category]:
count = results[category][c2]
else:
count = 0
row += " %3i |" % count
total += count
if c2 == category:
correct += count
print(row)
print(subheader)
print("\n%5.3f percent correct" %((correct * 100) / total))
print("total of %i instances" % total)

print("SMALL DATA SET")
tenfold("pimaSmall/pimaSmall",
"num num num num num num num num class", 1)
print("\n\nLARGE DATA SET")

tenfold("pima/pima",
"num num num num num num num num class", 1)

###tenfold("mpgData/mpgData", "class num num num num num comment")












































































































































































以上是关于knn的python代码的主要内容,如果未能解决你的问题,请参考以下文章

knn_in_python

[Python] 实施kNN算法

以❤️简单易懂❤️的语言带你搞懂有监督学习算法附Python代码详解机器学习系列之KNN篇

Python中的KNN实现

python_mmdt:从1到2--实现基于KNN的机器学*恶意代码分类器

Python Scikit 学习 Knn 最近邻回归