大数据学习路线是啥?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据学习路线是啥?相关的知识,希望对你有一定的参考价值。

主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。

阶段一:学习入门知识

这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。mysql 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。

MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。

而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。

1、Linux 基础入门(新版)

2、Vim编辑器

3、Git 实战教程

4、MySQL 基础课程

5、MongoDB 基础教程

6、Redis基础教程 

阶段二:Java基础

Java 是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。

Java 语言具有功能强大和简单易用两个特征,跨平台应用能力比 C、C++ 更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。最重要的一点是 Hadoop 是用 Java 编写的。

1、Java编程语言(新版)

2、Java进阶之设计模式

3、J2SE核心开发实战

4、JDK 核心 API

5、JDBC 入门教程

6、Java 8 新特性指南

阶段三:Scala基础

Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性。由于 Scala 运行于 Java 平台(Java 虚拟机),并兼容现有的Java 程序,所以 Scala 可以和大数据相关的基于 JVM 的系统很好的集成。

1、Scala 开发教程

2、Scala 专题教程 - Case Class和模式匹配

3、Scala 专题教程 - 隐式变换和隐式参数

4、Scala 专题教程 - 抽象成员

5、Scala 专题教程 - Extractor

6、Scala 开发二十四点游戏

阶段四:Hadoop技术模块

Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。

1、Hadoop入门进阶课程

2、Hadoop部署及管理

3、HBASE 教程

4、Hadoop 分布式文件系统--导入和导出数据

5、使用 Flume 收集数据

阶段五:Hadoop项目实战

当然,学完理论就要进行动手实战了,Hadoop 项目实战可以帮助加深对内容的理解,并锻炼动手能力。

1、Hadoop 图处理--《hadoop应用框架》

 阶段六:Spark技术模块

Spark 和 Hadoop 都是大数据框架。Hadoop 提供了 Spark 所没有的功能特性,比如分布式文件系统,而 Spark 为需要它的那些数据集提供了实时内存处理。所以学习 Spark 也非常必要。

1、Spark

2、x 快速入门教程

2、Spark 大数据动手实验

3、Spark 基础之 GraphX 图计算框架学习

4、Spark 基础之 DataFrame 基本概念学习

5、Spark 基础之 DataFrame 高阶应用技巧

6、Spark 基础之 Streaming 快速上手

7、Spark 基础之 SQL 快速上手

8、Spark 基础之使用机器学习库 MLlib

9、Spark 基础之 SparkR 快速上手

10、流式实时日志分析系统--《Spark 最佳实践》

11、使用 Spark 和 D3.js 分析航班大数据

阶段七:大数据项目实战

最后阶段提供了大数据实战项目,这是对常用技能的系统运用,例如使用常用的机器学习进行建模、分析和运算,这是成为大数据工程师过程中的重要一步。

1、Ebay 在线拍卖数据分析 

2、流式实时日志分析系统--《Spark 最佳实践》

3、大数据带你挖掘打车的秘籍

4、Twitter数据情感分析

5、使用 Spark 进行流量日志分析

6、Spark流式计算电商商品关注度

7、Spark的模式挖掘-FPGrowth算法

扩展资料:

大数据技术的具体内容:

分布式存储计算架构(强烈推荐:Hadoop)

分布式程序设计(包含:Apache Pig或者Hive)

分布式文件系统(比如:Google GFS)

多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo, DynamoDB等)

数据收集架构(比如:Kinesis,Kafla)

集成开发环境(比如:R-Studio)

程序开发辅助工具(比如:大量的第三方开发辅助工具)

调度协调架构工具(比如:Apache Aurora)

机器学习(常用的有Apache Mahout 或 H2O)

托管管理(比如:Apache Hadoop Benchmarking)

安全管理(常用的有Gateway)

大数据系统部署(可以看下Apache Ambari)

搜索引擎架构( 学习或者企业都建议使用Lucene搜索引擎)

多种数据库的演变(MySQL/Memcached)

商业智能(大力推荐:Jaspersoft )

数据可视化(这个工具就很多了,可以根据实际需要来选择)

大数据处理算法(10大经典算法)



参考技术A 大数据学习主要分为7个阶段:入门知识、Java基础、Scala基础、Hadoop技术模块、Hadoop项目实战、Spark技术模块、大数据项目实战。如需学习大数据,推荐选择【达内教育】。

阶段一:学习入门知识。
在学习之前需要先掌握基本的数据库知识。
阶段二:【Java基础】。
Java是目前使用最为广泛的编程语言,适合作为大数据应用的开发语言。
阶段三:Scala基础。
Scala是一种多范式的编程语言。
阶段四:Hadoop技术模块。
Hadoop是一款支持数据密集型分布式应用并以Apache2.0许可协议发布的开源软件框架,它能搭建大型数据仓库,PB级别数据的存储、处理、分析、统计等业务。
阶段五:Hadoop项目实战。
Hadoop项目实战可以帮助加深对内容的理解,并锻炼动手能力。
阶段七:大数据项目实战。
检测对常用技能的系统运用。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据的相关信息,推荐咨询【达内教育】。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。达内IT培训机构,试听名额限时抢购。官网客服博学小赵爱生活高能答主
2021-03-10·专注于食品生活科技行业博学小赵爱生活采纳数:133获赞数:110837
向TA提问私信TA

主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。

阶段一:学习入门知识

这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。MySQL 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。

MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。

而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。

1、Linux 基础入门(新版)

2、Vim编辑器

3、Git 实战教程

4、MySQL 基础课程

5、MongoDB 基础教程

6、Redis基础教程 

阶段二:Java基础

Java 是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。

Java 语言具有功能强大和简单易用两个特征,跨平台应用能力比 C、C++ 更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。最重要的一点是 Hadoop 是用 Java 编写的。

1、Java编程语言(新版)

2、Java进阶之设计模式

3、J2SE核心开发实战

4、JDK 核心 API

5、JDBC 入门教程

6、Java 8 新特性指南

阶段三:Scala基础

Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性。由于 Scala 运行于 Java 平台(Java 虚拟机),并兼容现有的Java 程序,所以 Scala 可以和大数据相关的基于 JVM 的系统很好的集成。

1、Scala 开发教程

2、Scala 专题教程 - Case Class和模式匹配

3、Scala 专题教程 - 隐式变换和隐式参数

4、Scala 专题教程 - 抽象成员

5、Scala 专题教程 - Extractor

6、Scala 开发二十四点游戏

阶段四:Hadoop技术模块

Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。

1、Hadoop入门进阶课程

2、Hadoop部署及管理

3、HBASE 教程

4、Hadoop 分布式文件系统--导入和导出数据

5、使用 Flume 收集数据

阶段五:Hadoop项目实战

当然,学完理论就要进行动手实战了,Hadoop 项目实战可以帮助加深对内容的理解,并锻炼动手能力。

1、Hadoop 图处理--《hadoop应用框架》

 阶段六:Spark技术模块

Spark 和 Hadoop 都是大数据框架。Hadoop 提供了 Spark 所没有的功能特性,比如分布式文件系统,而 Spark 为需要它的那些数据集提供了实时内存处理。所以学习 Spark 也非常必要。

1、Spark

2、x 快速入门教程

2、Spark 大数据动手实验

3、Spark 基础之 GraphX 图计算框架学习

4、Spark 基础之 DataFrame 基本概念学习

5、Spark 基础之 DataFrame 高阶应用技巧

6、Spark 基础之 Streaming 快速上手

7、Spark 基础之 SQL 快速上手

8、Spark 基础之使用机器学习库 MLlib

9、Spark 基础之 SparkR 快速上手

10、流式实时日志分析系统--《Spark 最佳实践》

11、使用 Spark 和 D3.js 分析航班大数据

阶段七:大数据项目实战

最后阶段提供了大数据实战项目,这是对常用技能的系统运用,例如使用常用的机器学习进行建模、分析和运算,这是成为大数据工程师过程中的重要一步。

1、Ebay 在线拍卖数据分析 

2、流式实时日志分析系统--《Spark 最佳实践》

3、大数据带你挖掘打车的秘籍

4、Twitter数据情感分析

5、使用 Spark 进行流量日志分析

6、Spark流式计算电商商品关注度

7、Spark的模式挖掘-FPGrowth算法

扩展资料:

大数据技术的具体内容:

分布式存储计算架构(强烈推荐:Hadoop)

分布式程序设计(包含:Apache Pig或者Hive)

分布式文件系统(比如:Google GFS)

多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo, DynamoDB等)

数据收集架构(比如:Kinesis,Kafla)

集成开发环境(比如:R-Studio)

程序开发辅助工具(比如:大量的第三方开发辅助工具)

调度协调架构工具(比如:Apache Aurora)

机器学习(常用的有Apache Mahout 或 H2O)

托管管理(比如:Apache Hadoop Benchmarking)

安全管理(常用的有Gateway)

大数据系统部署(可以看下Apache Ambari)

搜索引擎架构( 学习或者企业都建议使用Lucene搜索引擎)

多种数据库的演变(MySQL/Memcached)

商业智能(大力推荐:Jaspersoft )

数据可视化(这个工具就很多了,可以根据实际需要来选择)

大数据处理算法(10大经典算法)



已赞过已踩过<你对这个回答的评价是?评论收起尚硅谷
2021-08-17·挤进尚硅谷,注定你优秀尚硅谷"尚硅谷"教育自成立以来,发展迅猛,凭借优秀的教学团队、前沿的课程体系、务实的教育理念,现已成为有口皆碑的IT培训品牌。向TA提问

对于大数据想必了解过的人和想要学习大数据的童鞋都是有所了解的,知道大数据培训相关的一些学习内容都有个大概的了解,但是对于大数据培训学习内容的一些比较详细的内容还是有所差距的,我们学习大数据的主要目的就是未来以后可以到大企业去做相关的工作,拿到客观的薪资。那么这就需要我们了解企业对于大数据技术的需求是什么,大数据培训机构大数据课程内容是否包含这些内容。接下来带大家简单了解一下。

第一阶段Java语言基础,此阶段是大数据刚入门阶段,主要是学习一些Java语言的概念、字符、流程控制等。

第二阶段Javaee核心了解并熟悉一些html、CSS的基础知识,JavaWeb和数据库,Linux基础,Linux操作系统基础原理、虚拟机使用与Linux搭建、Shell 脚本编程、Linux 权限管理等基本的 Linux 使用知识,通过实际操作学会使用。头条莱垍

第五阶段 Hadoop 生态体系,Hadoop 是大数据的重中之重,无论是整体的生态系统、还是各种原理、使用、部署,都是大数据工程师工作中的核心,这一部分必须详细解读同时辅以实战学习。

第六阶段Spark生态体系,这也是是大数据非常核心的一部分内容,在这一时期需要了解Scala语言的使用、各种数据结构、同时还要深度讲解spark的一系列核心概念比如结构、安装、运行、理论概念等。

2021大数据学习路线图:

参考技术B 大数据学习主要分为7个阶段:入门知识、Java基础、Scala基础、Hadoop技术模块、Hadoop项目实战、Spark技术模块、大数据项目实战。如需学习大数据,推荐选择【达内教育】。

阶段一:学习入门知识。
在学习之前需要先掌握基本的数据库知识。
阶段二:【Java基础】。
Java是目前使用最为广泛的编程语言,适合作为大数据应用的开发语言。
阶段三:Scala基础。
Scala是一种多范式的编程语言。
阶段四:Hadoop技术模块。
Hadoop是一款支持数据密集型分布式应用并以Apache2.0许可协议发布的开源软件框架,它能搭建大型数据仓库,PB级别数据的存储、处理、分析、统计等业务。
阶段五:Hadoop项目实战。
Hadoop项目实战可以帮助加深对内容的理解,并锻炼动手能力。
阶段七:大数据项目实战。
检测对常用技能的系统运用。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据的相关信息,推荐咨询【达内教育】。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。达内IT培训机构,试听名额限时抢购。

零基础学习大数据的完整学习路线

  最近很多人都想学习大数据开发,但是却不知道如何开始学习,今天软妹子专门整理了一份针对大数据初学者的大数据开发学习路线。

  下面分十个章节来说明大数据开发要学习的内容:

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  技术分享图片

  以上就是一个大数据新手,想要学会大数据开发,需要学习的内容,大数据学习是一个持续的过程,只要用心学,没有学不会的东西哦!
我要推荐下我自己建的大数据开发学习群:119599574,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享都是学大数据开发的,如果你正在学习大数据,欢迎初学和进阶中的小伙伴。




以上是关于大数据学习路线是啥?的主要内容,如果未能解决你的问题,请参考以下文章

大数据学习路线是啥?

计算机软件开发学习路线是啥?

零基础学习大数据的完整学习路线

大数据难学吗?如何学习大数据?(附学习路线)

大数据学习路线指导,告诉你如何学习大数据

大数据学习路线 让你精准掌握大数据技术学习