spark中job,stage,task的关系

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark中job,stage,task的关系相关的知识,希望对你有一定的参考价值。

参考技术A 1、一个应用程序对应多个job,一个job会有多个stage阶段,一个stage会有多个task

2、一个应用程序中有多少个行动算子就会创建多少个job作业;一个job作业中一个宽依赖会划分一个stage阶段;同一个stage阶段中最后一个算子有多少个分区这个stage就有多少个task,因为窄依赖每个分区任务是并行执行的,没有必要每个算子的一个分区启动一个task任务。如图所示阶段2最后一个map算子是对应5个分区,reducebykey是3个分区,总共是8个task任务。

3、当一个rdd的数据需要打乱重组然后分配到下一个rdd时就产生shuffle阶段,宽依赖就是以shuffle进行划分的。

spark:Task,Partition,RDD节点数Executor数core数目的关系和Application,Driver,Job,Task,Stage理解

 梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数、Executor数、core数目的关系。

输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block
当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。
随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。

 

  • 每个节点可以起一个或多个Executor。
  • 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
  • 每个Task执行的结果就是生成了目标RDD的一个partiton

注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。

而 Task被执行的并发度 = Executor数目 * 每个Executor核数。

至于partition的数目:

  • 对于数据读入阶段,例如sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
  • 在Map阶段partition数目保持不变。
  • 在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。

1,Application

application(应用)其实就是用spark-submit提交的程序。比方说spark examples中的计算pi的SparkPi。一个application通常包含三部分:从数据源(比方说HDFS)取数据形成RDD,通过RDD的transformation和action进行计算,将结果输出到console或者外部存储(比方说collect收集输出到console)。

2,Driver

 Spark中的driver感觉其实和yarn中Application Master的功能相类似。主要完成任务的调度以及和executor和cluster manager进行协调。有client和cluster联众模式。client模式driver在任务提交的机器上运行,而cluster模式会随机选择机器中的一台机器启动driver。从spark官网截图的一张图可以大致了解driver的功能。

3,Job

 Spark中的Job和MR中Job不一样不一样。MR中Job主要是Map或者Reduce Job。而Spark的Job其实很好区别,一个action算子就算一个Job,比方说count,first等。

4, Task

Task是Spark中最新的执行单元。RDD一般是带有partitions的,每个partition的在一个executor上的执行可以任务是一个Task。 

 

5, Stage

 

Stage概念是spark中独有的。一般而言一个Job会切换成一定数量的stage。各个stage之间按照顺序执行。至于stage是怎么切分的,首选得知道spark论文中提到的narrow dependency(窄依赖)和wide dependency( 宽依赖)的概念。其实很好区分,看一下父RDD中的数据是否进入不同的子RDD,如果只进入到一个子RDD则是窄依赖,否则就是宽依赖。宽依赖和窄依赖的边界就是stage的划分点

 

 

 

以上是关于spark中job,stage,task的关系的主要内容,如果未能解决你的问题,请参考以下文章

spark中job,stage,task的关系

spark:Task,Partition,RDD节点数Executor数core数目的关系和Application,Driver,Job,Task,Stage理解

5.2 Spark运行架构及流程检测

Spark常见问题整理--面试前必看

Spark常见问题整理--面试前必看

spark RDD