ChatGPT API接口使用+fine tune微调+prompt介绍

Posted BGoodHabit

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ChatGPT API接口使用+fine tune微调+prompt介绍相关的知识,希望对你有一定的参考价值。

目录

1 接口调用

我们可以用OpenAI 提供的API接口实现很多NLP的任务,还可以支持生成图像,提取embedding以及finetune的功能。接下来我们来看下具体怎么调用接口。

1.1 生成key

首先需要从网址:https://platform.openai.com/account/api-keys生成我们的API key

获得key后我们就可以调用API接口了。目前OpenAI 的 API 服务提供了一个免费的 API 计算单元 (ACU) 的额度,该额度可以用于测试和试用 OpenAI 提供的服务。免费的额度用完后,需要购买额外的 ACU 才能继续使用 OpenAI 的 API 服务。我们可以从Usage和Billing:https://platform.openai.com/account/usage 里去查看我们的免费额度以及进行额度充值:

1.2 接口功能

首先我们需要安装openai

pip install openai

安装好openai以及获得API key后,我们就可以调用接口了,首先我们来看下openai能够提供的模型有什么:

import openai
openai.api_key = "sk-Wljk3BVhN0VieGCwAzEXT3BlbkFJ*******"

models = openai.Model.list()

for model in models['data']:
    print(model['id'])

我们可以看出,目前提供的模型有如下:

接下来大概介绍一下我们应该怎样去调用接口,获取我们想要的结果。

1.2.1 图片生成 (image generation)

import openai
import json

# 设置API密钥
openai.api_key = "sk-Wljk3BVhN0VieGCwAzEXT3BlbkFJ*******"

def image_genaration(prompt):
    response = openai.Image.create(
    prompt=prompt,
    n=1,
    size="1024x1024"
    )
    image_url = response['data'][0]['url']
    return image_url

if __name__=='__main__':
    prompt='a delicious dessert'
    result = image_genaration(prompt)
    print(result)

prompt=‘a delicious dessert’, 其中返回url地址,我们将地址复制到浏览器中,打开看到如下图:

prompt=‘母亲在厨房忙碌着’,OpenAI返回的效果图如下:

人物画像细节生成还不够逼真。来试一试中国的古诗词效果,
prompt=‘踏花归去马蹄香’

马蹄上应该画出一些蝴蝶🦋来表达马蹄的花香味啊,不太满意~😞

1.2.2 对话(chat)

api接口调用代码如下所示:

import openai
import json

# 设置API密钥
openai.api_key = "sk-Wljk3BVhN0VieGCwAzEXT3BlbkFJ*******"
def chat(prompt):

    response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[
        "role": "user", "content":prompt
    ]
)
    answer = response.choices[0].message.content
    return answer

if __name__=='__main__':
    prompt='人口最多的国家'
    result = chat(prompt)
    print(result)

结果如下:

1.2.3 中文纠错 (Chinese Spelling Correct)

我们可以通过合理的写prompt,基于问答形式,让gpt-3.5做NLP任务。比如对中文纠错,我们可以这样写prompt,让chagpt能够做纠错NLP任务。如下所示:

def correct():
    prompt="改正错词输出正确句子:\\n\\n我在京东电商平台买了苹果耳几和华为体脂称"  #建议prompt: 改正错词输出正确句子:\\n\\n input_sentence
    response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[
        "role": "user", "content":prompt
    ]
)
    answer = response.choices[0].message.content
    return answer

if __name__=='__main__':
    result = correct()
    print(result)

结果如下:

1.2.4 关键词提取 (keyword extract)

def keyword():
    prompt="对下面内容识别2个关键词,每个词字数不超过3个字:\\n\\n齐选汽车挂件车内挂饰车载后视镜吊坠高档实心黄铜玉石出入平安保男女 红流苏-玉髓平安扣"  #建议prompt: 对下面内容识别n个关键词,每个词字数不超过m个字:\\n\\n input data
    response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[
        "role": "user", "content":prompt
    ]
)
    answer = response.choices[0].message.content
    return answer

if __name__=='__main__':
    result = keyword()
    print(result)


对于不同的prompt,输出的结果差异也较大。所以对于具体的任务场景,我们需要尝试不同的prompt, 根据结果的反馈,不断的调整和优化prompt,从而得到更加准确的结果

1.2.5 抽取文本向量 (Embedding)

def embedding():
    content = '苹果手机'
    response = openai.Embedding.create(
    model="text-embedding-ada-002",
    input=content
)
    answer = response.data[0].embedding
    return answer

if __name__=='__main__':
    result = embedding()
    print(len(result))
    print(result)

得到结果如下:

是一个1536维度的向量,我们可以基于文本的向量去做很多任务,比如计算两个向量的余弦值,计算相似性分值等。

1.2.6 微调 (fine tune)

openAI提供了接口可以用我们自己的数据进行fine tune,得到适应我们自己业务场景的新模型。假如我们需要训练一个适应我们自己领域知识的聊天机器人,我们可以按照下面流程来做fine tune。

  • 数据准备

我们可以先把数据转成csv格式,需提供prompt列和对应的completion列,其中prompt相当于问题,completion就是对应的答案,如下是我们要用来fine tune模型的result.csv训练样本内容显示:

然后我们可以用openAI提供的数据处理工具对数据转成json格式的文件

openai tools fine_tunes.prepare_data -f result.csv

执行完后,我们会得到一个对应的json文件:result_prepared.jsonl

  • 模型微调训练
    接下来我们就可以用已有的模型 (ada, babbage, curie, davinci) 进行fine tune,官方给出的具体可以用来做微调的模型主要如下:

    首先需要指定我们自己的API key:
export OPENAI_API_KEY="sk-Wljk3BVhN0VieGCwAzEX*********"

然后开始训练:

openai api fine_tunes.create -t result_prepared.jsonl -m ada

在这里用我们自己的数据result_prepared.jsonl,基于base model: ada模型提交fine tune任务。提交后会返回给我们一个JOB ID,通过这个job id我们可以跟进模型在远程服务器训练情况:

 openai api fine_tunes.follow -i ft-sWKDNnTmUyOGEdpvbAOvEaZt

我们可以看到结果如下:

可以看到我们的模型训练好了模型名称叫做:ada:ft-personal-2023-03-27-03-24-09,然后我们就可以试用我们训练好的模型看效果了,测试如下:

openai api completions.create -m ada:ft-personal-2023-03-27-03-24-09 -p <YOUR_PROMPT>

其中<YOUR_PROMPT>写入我们要测试的问题就好。

现在我们可以去远程服务器上查看下我们fine tune好的模型是否已经有了:

models = openai.Model.list()

发现有了刚刚fine tune的模型:

对于分类,实体识别等任务,OPNAI官网也提供了如何做处理数据,让模型做fine tune,详情可以参考官网https://platform.openai.com/docs/introduction/overview

2 如何写好prompt

prompt如何表达,对于chatgpt返回的答案会差异很大,通过prompt正确的表达问题,chatgpt才会返回更合适的结果。通过自己这些天的尝试以及官网给的提示,感受就是在写prompt时候,可以通过说明,例子,限制条件,修饰词等具体表达问题,这样chatgpt会给出更加精准的答案。接下来,我们对几种常见的任务,prompt应用如何写。

2.1分类任务

我们可以对prompt这么构造:
判断content属于A,B,C,D哪一种分类
content: detail
分类:

对应的查询结果如下:

2.2 归纳总结

提供了非常强大能力,能够基于学到的广泛知识,给出问题解决方案,合理的建议,实施步骤,商业计划,人物描写等等。所以我们可以合理写prompt,更有意思的答案。

哈哈,看起来不够大胆,于是进一步发问

给出的这些答案果然更加激动人心。

3.3 翻译

我们可以将一种语言翻译成我们大多数其他语言。对于翻译任务,我们只需要写prompt表达我们的意愿就是:
将下面内容翻译成英语,日语,德语
content

2.4 API接口多样性控制

在调用API接口的时候,我们可以通过设置两个参数=='temperature’和’top_p’来控制生成文本的多样性和可控度==。当temperature较高时,生成的文本会更加随机和多样化,而当temperature较低时,生成的文本会更加保守和可控。top_p参数用于控制生成文本的可控度,它会限制模型生成文本时可以选择的token的数量。具体来说,当top_p越低时,模型只考虑概率分布中累计概率最高的一部分token,而忽略其他低概率的token。这样一来,生成的文本就更加可控,因为只有那些最可能的token才会被考虑。而当top_p越高的时候,生成的文本可能会更加灵活和多样,因为模型会考虑更多的低概率token。每次调用的时候,我们可以设置这两个参数:

3 实用资料

大模型训练平台:https://github.com/hpcaitech/ColossalAI
相关资料:中文精选资源清单

fine-tuning

转自https://blog.csdn.net/weixin_42137700/article/details/82107208

 

在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。

 

以下是常见的两类迁移学习场景:

1 卷积网络当做特征提取器。使用在ImageNet上预训练的网络,去掉最后的全连接层,剩余部分当做特征提取器(例如AlexNet在最后分类器前,是4096维的特征向量)。这样提取的特征叫做CNN codes。得到这样的特征后,可以使用线性分类器(Liner SVM、Softmax等)来分类图像。

2 Fine-tuning卷积网络。替换掉网络的输入层(数据),使用新的数据继续训练。Fine-tune时可以选择fine-tune全部层或部分层。通常,前面的层提取的是图像的通用特征(generic features)(例如边缘检测,色彩检测),这些特征对许多任务都有用。后面的层提取的是与特定类别有关的特征,因此fine-tune时常常只需要Fine-tuning后面的层。

 

预训练模型

在ImageNet上训练一个网络,即使使用多GPU也要花费很长时间。因此人们通常共享他们预训练好的网络,这样有利于其他人再去使用。例如,Caffe有预训练好的网络地址Model Zoo。

 

何时以及如何Fine-tune

决定如何使用迁移学习的因素有很多,这是最重要的只有两个:新数据集的大小、以及新数据和原数据集的相似程度。有一点一定记住:网络前几层学到的是通用特征,后面几层学到的是与类别相关的特征。这里有使用的四个场景:

1、新数据集比较小且和原数据集相似。因为新数据集比较小,如果fine-tune可能会过拟合;又因为新旧数据集类似,我们期望他们高层特征类似,可以使用预训练网络当做特征提取器,用提取的特征训练线性分类器。

2、新数据集大且和原数据集相似。因为新数据集足够大,可以fine-tune整个网络。

3、新数据集小且和原数据集不相似。新数据集小,最好不要fine-tune,和原数据集不类似,最好也不使用高层特征。这时可是使用前面层的特征来训练SVM分类器。

4、新数据集大且和原数据集不相似。因为新数据集足够大,可以重新训练。但是实践中fine-tune预训练模型还是有益的。新数据集足够大,可以fine-tine整个网络。

 

实践建议

预训练模型的限制。使用预训练模型,受限于其网络架构。例如,你不能随意从预训练模型取出卷积层。但是因为参数共享,可以输入任意大小图像;卷积层和池化层对输入数据大小没有要求(只要步长stride fit),其输出大小和属于大小相关;全连接层对输入大小没有要求,输出大小固定。(总感觉哪边不对)

学习率。与重新训练相比,fine-tune要使用更小的学习率。因为训练好的网络模型权重已经平滑,我们不希望太快扭曲(distort)它们(尤其是当随机初始化线性分类器来分类预训练模型提取的特征时)。

以上是关于ChatGPT API接口使用+fine tune微调+prompt介绍的主要内容,如果未能解决你的问题,请参考以下文章

利用GPT-3 Fine-tunes训练专属语言模型

PaddleHub--飞桨预训练模型应用工具{风格迁移模型词法分析情感分析Fine-tune API微调}

fine-tune是啥意思

fine-tuning:预训练中的迁移

fine-tuning

Pytorch Note56 Fine-tuning 通过微调进行迁移学习