ClassicNetwork 图像分类网络论文链接汇总
Posted 风信子的猫Redamancy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ClassicNetwork 图像分类网络论文链接汇总相关的知识,希望对你有一定的参考价值。
ClassicNetwork 图像分类网络论文链接汇总
Classical network implemented by pytorch
LeNet:
-
LeNet: LeNet-5, convolutional neural networks
AlexNet:
-
ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, 2012
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
VGG:
-
Very Deep Convolutional Networks for Large-Scale Image Recognition,Karen Simonyan,2014
ResNet:
-
Deep Residual Learning for Image Recognition, He-Kaiming, 2016
Batch Normalization
-
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,2015
ZFNet
-
Visualizing and Understanding Convolutional Networks,2013
Inception系列
-
InceptionV1: Going deeper with convolutions , Christian Szegedy , 2014
-
InceptionV2 and InceptionV3: Rethinking the Inception Architecture for Computer Vision , Christian Szegedy ,2015
-
InceptionV4 and Inception-ResNet: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , Christian Szegedy ,2016
DenseNet:
-
Densely Connected Convolutional Networks, 2017
ResNeXt:
-
Aggregated Residual Transformations for Deep Neural Networks,2017
NASNet:
-
Learning Transferable Architectures for Scalable Image Recognition
SENet
-
Squeeze-and-Excitation Networks
MobileNet:
-
MobileNet(v1) : MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
-
MobileNet(v2) : MobileNetV2: Inverted Residuals and Linear Bottlenecks
-
MobileNet(v3) : Searching for MobileNetV3
ShuffleNet:
-
ShuffleNet(v1) :ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
-
ShuffleNet(v2) :ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
EfficientNet:
-
EfficientNet(v1) :EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
-
EfficientNet(v2) :EfficientNetV2: Smaller Models and Faster Training
以上是关于ClassicNetwork 图像分类网络论文链接汇总的主要内容,如果未能解决你的问题,请参考以下文章