为啥要用kafka?kafka适用啥样的场景?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了为啥要用kafka?kafka适用啥样的场景?相关的知识,希望对你有一定的参考价值。
参考技术A Apache Kafka 集群环境搭建 - - ITeye技术网站http://bigcat2013.iteye.com/blog/2175880?utm_source=tuicool&utm_medium=referral
接下来是老生常谈的问题:为什么要用kafka?kafka适用什么样的场景?我先和大家分享一下自己再项目中的使用总结,有其他想法的同学欢迎补充:
使用kafka的理由:
1.分布式,高吞吐量,速度快(kafka是直接通过磁盘存储,线性读写,速度快:避免了数据在JVM内存和系统内存之间的复制,减少耗性能的对象创建和垃圾回收)
2.同时支持实时和离线两种解决方案(相信很多项目都有类似的需求,这也是Linkedin的官方架构,我们是一部分数据通过storm做实时计算处理,一部分到hadoop做离线分析)。
3.open source (open source 谁不喜欢呢)
4.源码由scala编写,可以运行在JVM上(笔者对scala很有好感,函数式语言一直都挺帅的,spark也是由scala写的,看来以后有空得刷刷scala)
使用场景:
笔者主要是用来做日志分析系统,其实Linkedin也是这么用的,可能是因为kafka对可靠性要求不是特别高,除了日志,网站的一些浏览数据应该也适用。(只要原始数据不需要直接存DB的都可以)
请简要描述一下hadoop,spark,mpi三种计算框架的特点以及分别适用于啥样的场景
Spark已经取代Hadoop成为最活跃的开源大数据项目,但是,在选择大数据框架时,企业不能因此就厚此薄彼近日,著名大数据专家Bernard Marr在一篇文章中分析了Spark和 Hadoop 的异同
Hadoop和Spark均是大数据框架,都提供了一些执行常见大数据任务的工具,但确切地说,它们所执行的任务并不相同,彼此也并不排斥
虽然在特定的情况下,Spark据称要比Hadoop快100倍,但它本身没有一个分布式存储系统
而分布式存储是如今许多大数据项目的基础,它可以将 PB 级的数据集存储在几乎无限数量的普通计算机的硬盘上,并提供了良好的可扩展性,只需要随着数据集的增大增加硬盘
因此,Spark需要一个第三方的分布式存储,也正是因为这个原因,许多大数据项目都将Spark安装在Hadoop之上,这样,Spark的高级分析应用程序就可以使用存储在HDFS中的数据了
与Hadoop相比,Spark真正的优势在于速度,Spark的大部分操作都是在内存中,而Hadoop的MapReduce系统会在每次操作之后将所有数据写回到物理存储介质上,这是为了确保在出现问题时能够完全恢复,但Spark的弹性分布式数据存储也能实现这一点
另外,在高级数据处理(如实时流处理、机器学习)方面,Spark的功能要胜过Hadoop
在Bernard看来,这一点连同其速度优势是Spark越来越受欢迎的真正原因
实时处理意味着可以在数据捕获的瞬间将其提交给分析型应用程序,并立即获得反馈
在各种各样的大数据应用程序中,这种处理的用途越来越多,比如,零售商使用的推荐引擎、制造业中的工业机械性能监控
Spark平台的速度和流数据处理能力也非常适合机器学习算法,这类算法可以自我学习和改进,直到找到问题的理想解决方案
这种技术是最先进制造系统(如预测零件何时损坏)和无人驾驶汽车的核心
Spark有自己的机器学习库MLib,而Hadoop系统则需要借助第三方机器学习库,如Apache Mahout
实际上,虽然Spark和Hadoop存在一些功能上的重叠,但它们都不是商业产品,并不存在真正的竞争关系,而通过为这类免费系统提供技术支持赢利的公司往往同时提供两种服务
例如,Cloudera 就既提供 Spark服务也提供 Hadoop服务,并会根据客户的需要提供最合适的建议
Bernard认为,虽然Spark发展迅速,但它尚处于起步阶段,安全和技术支持基础设施方还不发达,在他看来,Spark在开源社区活跃度的上升,表明企业用户正在寻找已存储数据的创新用法 参考技术A hadoop包括hdfs、mapreduce、yarn、核心组件。hdfs用于存储,mapreduce用于计算,yarn用于资源管理。
spark包括spark sql、saprk mllib、spark streaming、spark 图计算。saprk的这些组件都是进行计算的。spark sql离线计算,spark streaming 流计算,spark mllib机器学习。
mpi高性能计算。
hahoop只有mapreduce是和spark一样用来计算,要比较的话,只能比较mapreduce与spark区别。mapreduce叠代计算中间结果放在磁盘,适合大数据离线计算。spark技术先进,统一使用rdd,结果可放在内存,pipeline,计算速度比mapreduce快。
建议大数据存储使用hadoop的hdfs,资源管理用hadoop的yarn,计算使用spark或mpi本回答被提问者和网友采纳
以上是关于为啥要用kafka?kafka适用啥样的场景?的主要内容,如果未能解决你的问题,请参考以下文章