R语言使用randomForest包构建随机森林模型(Random forests)使用importance函数查看特征重要度使用table函数计算混淆矩阵评估分类模型性能包外错误估计OOB
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言使用randomForest包构建随机森林模型(Random forests)使用importance函数查看特征重要度使用table函数计算混淆矩阵评估分类模型性能包外错误估计OOB相关的知识,希望对你有一定的参考价值。
R语言使用randomForest包中的randomForest函数构建随机森林模型(Random forests)、使用importance函数查看特征重要度、使用table函数计算混淆矩阵评估分类模型性能、包外错误估计OOB(out-of-bag error estimate)
目录
以上是关于R语言使用randomForest包构建随机森林模型(Random forests)使用importance函数查看特征重要度使用table函数计算混淆矩阵评估分类模型性能包外错误估计OOB的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用ranger包的ranger函数构建随机森林模型(random forest)
R语言使用caret包构建随机森林模型(random forest)构建回归模型通过method参数指定算法名称通过ntree参数指定随机森林中树的个数
R语言构建随机森林模型randomForest分类模型并评估模型在测试集和训练集上的效果(accurayF1偏差Deviance):随机森林在Bagging算法的基础上加入了列采样(分枝特征随机)