在回归分析中,F检验和t检验各有啥作用?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在回归分析中,F检验和t检验各有啥作用?相关的知识,希望对你有一定的参考价值。
F检验用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。t检验推论差异发生的概率,从而比较两个平均数的差异是否显著。
F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验,
Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。
F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。
若两个母体有相同的方差(方差齐性),那么可以采用F检验,但是该检验会呈现极端的非稳健性和非常态性,可以用t检验、巴特勒特检验等取代。
扩展资料
回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。
因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
正确应用回归分析预测时应注意:
①用定性分析判断现象之间的依存关系;
②避免回归预测的任意外推;
③应用合适的数据资料。
参考资料来源:百度百科-回归分析
F检验用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。
在一般情形下,t检验与f检验的结果没有必然联系;但当解释变量之间两两不相关时,若所有解释变量的系数均通过t检验,那么回归方程也能通过f检验。
正确理解P值与差别有无统计学意义
P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。
假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。
以上内容参考:百度百科-t检验
参考技术B 一元线性回归里t检验和f检验等价,但在多元线性回归里,t检验可以检验各个回归系数显著性,f检验用来检验总体回归关系的显著性。t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。
在一般情形下,t检验与F检验的结果没有必然联系;但当解释变量之间两两不相关时,若所有解释变量的系数均通过t检验,那么回归方程也能通过F检验。
在回归分析中,f检验和t检验各有啥作用
F检验是对整个模型而已的,看是不是自变量系数不全为0,而t检验则是分别针对某个自变量的,看每个自变量是否有显著预测效力。
t检验的实质:主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。[1] t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
F检验的实质:通常用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
检验注意
F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验,Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。
F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。
以上内容参考:百度百科-F检验
参考技术A 一元线性回归里t检验和f检验等价,但在多元线性回归里,t检验可以检验各个回归系数显著性,f检验用来检验总体回归关系的显著性。t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。
在一般情形下,t检验与f检验的结果没有必然联系;但当解释变量之间两两不相关时,若所有解释变量的系数均通过t检验,那么回归方程也能通过f检验。
以上是关于在回归分析中,F检验和t检验各有啥作用?的主要内容,如果未能解决你的问题,请参考以下文章
在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是不是有等价的作用?