再多元线性回归分析中,t检验与F检验有何不同
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了再多元线性回归分析中,t检验与F检验有何不同相关的知识,希望对你有一定的参考价值。
如题,高手指教!十万火急啊
t检验与F检验两者之间有3点不同,具体介绍如下:
一、两者的目的不同:
1、t检验的目的:t检验的目的是为了检验某一个解释变量对被解释变量的影响。
2、F检验的目的:F检验的目的是为了检验所有的解释变量对被解释变量的影响。
二、两者的使用场合不同:
1、t检验的使用场合:已知一个总体均数;可得到一个样本均数及该样本标准差;样本来自正态或近似正态总体。
2、F检验的使用场合:假设一系列服从正态分布的母体,都有相同的标准差。这是最典型的F检验,该检验在方差分析(ANOVA)中也非常重要。假设一个回归模型很好地符合其数据集要求,检验多元线性回归模型中被解释变量与解释变量之间线性关系在总体上是否显著。
三、两者的实质不同:
1、t检验的实质:主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。[1] t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
2、F检验的实质:通常用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
参考资料来源:百度百科-F检验
参考资料来源:百度百科-t检验
参考技术A t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系参考资料:标准答案
本回答被提问者和网友采纳 参考技术B F检验主要是检验因变量同多个自变量的整体线性关系是否显著,在k个自变量中,只要有一个自变量同因变量的线性关系显著,t检验则是对每个回归系数分别进行单独的检验,以判断每个自变量对因变量的影响是否显著。关于多元线性回归模型的显著性检验
“在回归分析中,回归方程的检验结果与回归系数的检验结果往往是一致的。”这句话对么?为什么?
综述:这句话分两种情况考虑。
第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的。
第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验结果一致。通常的情况是,方程的总体线性关系是显著的,但是某个变量的影响却并不显著。
因为,方程总体的线性关系显著性F检验的备择假设是估计参数不全为0,所以当某个参数的t检验通过(即拒绝零假设,参数不为0),则很可能影响到总体线性检验拒绝零假设。
回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。
回归分析
回归模型重要的基础或者方法就是回归分析,回归分析是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论,是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。
参考技术A 这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的。第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验结果一致。通常的情况是,方程的总体线性关系是显著的,但是某个变量的影响却并不显著。因为,方程总体的线性关系显著性F检验的备择假设是估计参数不全为0,所以当某个参数的t检验通过(即拒绝零假设,参数不为0),则很可能影响到总体线性检验拒绝零假设。追问所以说,判断题里面看到这句话应该认为它是错的么?
本回答被提问者和网友采纳 参考技术B 不对呀~~~就是控制变量滴问题啦~~~~以上是关于再多元线性回归分析中,t检验与F检验有何不同的主要内容,如果未能解决你的问题,请参考以下文章
在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是不是有等价的作用?