Linux系统之cuda 11情况下如何配置pytorch 10.2

Posted qq_41627642

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux系统之cuda 11情况下如何配置pytorch 10.2相关的知识,希望对你有一定的参考价值。

由于目前pytorch1.8.2只能支持到10.2的版本,但ubuntu最新的系统驱动直接支持了cuda 11.4, 并且cuda tooklit支持的默认下载也是11.0。

1、确认NVIDIA驱动安装

lspci|grep NVIDIA

1. 需要先降低cuda tooklit的版本(卸载新版本)

cuda-uninstaller in /usr/local/cuda-11.1/bin
sudo rm -rf /usr/local/cuda-11.1

cd /usr/local/cuda-11.0/bin/
sudo ./cuda-uninstaller
sudo rm -rf /usr/local/cuda-11.1

2. 之后下载安装cuda 10.2:

1、查看linux系统是多少位

2、查看ubantu版本号

3、CUDA 10.2 下载与安装

CUDA Toolkit 10.2 Download

wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
sudo sh cuda_10.2.89_440.33.01_linux.run

4. 只安装驱动外的其他内容,安装结束后测试是否成功

cd /usr/local/cuda-10.2/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery

出现PASS,代表没有问题。

3.输入以下命令验证是否安装成功:

 nvidia-smi 

3. 安装cudnn

查看当前电脑安装的cndnn

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

可以看到,目前版本为7.6.5。

官网选择适合自己的版本,有很多种可选,我们选择v7.6.5。

下载这三个文件:

1、删除旧版本

若之前以压缩包的形式安装,则删除以下两个文件夹中cudnn即可:

sudo rm -rf/usr/local/cuda/include/cudnn.h 
sudo rm -rf/usr/local/cuda/lib64/libcudnn*

若之前以deb的形式安装,则删除目录较多:

sudo rm -rf /usr/local/cuda/targets/x86_64-linux/include/cudnn.h
sudo rm -rf /usr/lib/x86_64-linux-gnu/libcudnn*
sudo rm -rf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn*
sudo rm -rf /usr/share/doc/libcudnn*
sudo rm -rf /var/lib/dpkg/info/libcudnn*
sudo rm -rf /usr/share/lintian/overrides/libcudnn*

2、之后使用命令安装:

sudo dpkg -i libcudnn7_7.6.5.32-1+cuda10.2_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.5.32-1+cuda10.2_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.5.32-1+cuda10.2_amd64.deb

以上是关于Linux系统之cuda 11情况下如何配置pytorch 10.2的主要内容,如果未能解决你的问题,请参考以下文章

Azure服务器Linux下配置cuda11.1 + cudnn + anaconda + pytorch

Azure服务器Linux下配置cuda11.1 + cudnn + anaconda + pytorch

在Windows系统配置WSL

linux服务器配置深度学习环境

如何玩转WSL 2

linux下安装SSH后,如何验证是不是安装成功?