[LeetCode] 229. Majority Element II 多数元素 II
Posted 轻风舞动
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LeetCode] 229. Majority Element II 多数元素 II相关的知识,希望对你有一定的参考价值。
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋
times.
Note: The algorithm should run in linear time and in O(1) space.
Example 1:
Input: [3,2,3] Output: [3]
Example 2:
Input: [1,1,1,3,3,2,2,2] Output: [1,2]
169. Majority Element 的拓展,这题要求的是出现次数大于n/3的元素,并且限定了时间和空间复杂度,因此不能排序,不能使用哈希表。
解法:Boyer-Moore多数投票算法 Boyer–Moore majority vote algorithm,T:O(n) S: O(1) 摩尔投票法 Moore Voting
Java:
public List<Integer> majorityElement(int[] nums) { if (nums == null || nums.length == 0) return new ArrayList<Integer>(); List<Integer> result = new ArrayList<Integer>(); int number1 = nums[0], number2 = nums[0], count1 = 0, count2 = 0, len = nums.length; for (int i = 0; i < len; i++) { if (nums[i] == number1) count1++; else if (nums[i] == number2) count2++; else if (count1 == 0) { number1 = nums[i]; count1 = 1; } else if (count2 == 0) { number2 = nums[i]; count2 = 1; } else { count1--; count2--; } } count1 = 0; count2 = 0; for (int i = 0; i < len; i++) { if (nums[i] == number1) count1++; else if (nums[i] == number2) count2++; } if (count1 > len / 3) result.add(number1); if (count2 > len / 3) result.add(number2); return result; }
Python:
class Solution: # @param {integer[]} nums # @return {integer[]} def majorityElement(self, nums): if not nums: return [] count1, count2, candidate1, candidate2 = 0, 0, 0, 1 for n in nums: if n == candidate1: count1 += 1 elif n == candidate2: count2 += 1 elif count1 == 0: candidate1, count1 = n, 1 elif count2 == 0: candidate2, count2 = n, 1 else: count1, count2 = count1 - 1, count2 - 1 return [n for n in (candidate1, candidate2) if nums.count(n) > len(nums) // 3]
Python:
class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: List[int] """ k, n, cnts = 3, len(nums), collections.defaultdict(int) for i in nums: cnts[i] += 1 # Detecting k items in cnts, at least one of them must have exactly # one in it. We will discard those k items by one for each. # This action keeps the same mojority numbers in the remaining numbers. # Because if x / n > 1 / k is true, then (x - 1) / (n - k) > 1 / k is also true. if len(cnts) == k: for j in cnts.keys(): cnts[j] -= 1 if cnts[j] == 0: del cnts[j] # Resets cnts for the following counting. for i in cnts.keys(): cnts[i] = 0 # Counts the occurrence of each candidate integer. for i in nums: if i in cnts: cnts[i] += 1 # Selects the integer which occurs > [n / k] times. result = [] for i in cnts.keys(): if cnts[i] > n / k: result.append(i) return result def majorityElement2(self, nums): """ :type nums: List[int] :rtype: List[int] """ return [i[0] for i in collections.Counter(nums).items() if i[1] > len(nums) / 3]
C++:
class Solution { public: vector<int> majorityElement(vector<int>& nums) { vector<int> res; int m = 0, n = 0, cm = 0, cn = 0; for (auto &a : nums) { if (a == m) ++cm; else if (a ==n) ++cn; else if (cm == 0) m = a, cm = 1; else if (cn == 0) n = a, cn = 1; else --cm, --cn; } cm = cn = 0; for (auto &a : nums) { if (a == m) ++cm; else if (a == n) ++cn; } if (cm > nums.size() / 3) res.push_back(m); if (cn > nums.size() / 3) res.push_back(n); return res; } };
C++:
vector<int> majorityElement(vector<int>& nums) { int cnt1 = 0, cnt2 = 0, a=0, b=1; for(auto n: nums){ if (a==n){ cnt1++; } else if (b==n){ cnt2++; } else if (cnt1==0){ a = n; cnt1 = 1; } else if (cnt2 == 0){ b = n; cnt2 = 1; } else{ cnt1--; cnt2--; } } cnt1 = cnt2 = 0; for(auto n: nums){ if (n==a) cnt1++; else if (n==b) cnt2++; } vector<int> res; if (cnt1 > nums.size()/3) res.push_back(a); if (cnt2 > nums.size()/3) res.push_back(b); return res; }
类似题目:
[LeetCode] 169. Majority Element 多数元素
All LeetCode Questions List 题目汇总
以上是关于[LeetCode] 229. Majority Element II 多数元素 II的主要内容,如果未能解决你的问题,请参考以下文章
LeetCode OJ 229. Majority Element II
Leetcode # 169, 229 Majority Element I and II
[LeetCode] 229. Majority Element II 多数元素 II
LeetCode 229. Majority Element II (众数之二)
LeetCode 229 Majority Element II(主要元素II)(Array)(Boyer–Moore majority vote algorithm)