LeetCode-动态规划杨辉三角

Posted Flix

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode-动态规划杨辉三角相关的知识,希望对你有一定的参考价值。

题目描述

给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。
技术图片
示例:

输入: 5
输出:
[
     [1],
    [1,1],
   [1,2,1],
  [1,3,3,1],
 [1,4,6,4,1]
]

题目链接: https://leetcode-cn.com/problems/pascals-triangle/

思路

首先生成一个二维数组 dp 来存储杨辉三角,该数组的每一行 i 包含一个 长度为 i 的一维数组(i 从 1 开始),并初始化为 1。

我们将杨辉三角靠右写:

[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]

我们发现当前元素 dp[i][j] 只与左上元素 dp[i-1][j-1] 和上一行元素 dp[i-1][j] 有关,如果 i-1、j-1 以及 j 都没有超过范围的话,有 dp[i][j] = dp[i-1][j-1] + dp[i-1][j]。所以,代码如下:

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
        vector<vector<int>> dp;
        for(int i=0; i<numRows; i++){
            dp.push_back(vector<int>(i+1, 1));  // 初始化为 1
        }

        for(int i=1; i<numRows; i++){
            for(int j=0; j<dp[i].size(); j++){
                if(i-1>=0 && j-1>=0 && j<dp[i-1].size()) dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
            }
        }

        return dp;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)


以上是关于LeetCode-动态规划杨辉三角的主要内容,如果未能解决你的问题,请参考以下文章

#动态规划 LeetCode 120 三角形最小路径和

leetcode 120. 三角形最小路径和

数据结构与算法动态规划——最小路径和(普通矩阵三角形两题)

动态规划

LeetCode

动态规划dp小练习课堂