Given a 2D binary matrix filled with 0‘s and 1‘s, find the largest square containing only 1‘s and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0
Return 4.
Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.
给一个2维的01矩阵,找出最大只含有1的正方形,返回它的面积。
解法1: Brute force,对于矩阵中的每一个为1的点,都把它当作正方形的左上角,然后判断不同大小的正方形内的点是不是都为1。
解法2: DP,对于第一种的解法肯定有很多的重复计算,所以可以用DP的方法,把某一点能组成的最大正方形记录下来。
Python: DP
class Solution: # @param {character[][]} matrix # @return {integer} def maximalSquare(self, matrix): if not matrix: return 0 m, n = len(matrix), len(matrix[0]) size = [[0 for j in xrange(n)] for i in xrange(m)] max_size = 0 for j in xrange(n): if matrix[0][j] == ‘1‘: size[0][j] = 1 max_size = max(max_size, size[0][j]) for i in xrange(1, m): if matrix[i][0] == ‘1‘: size[i][0] = 1 else: size[i][0] = 0 for j in xrange(1, n): if matrix[i][j] == ‘1‘: size[i][j] = min(size[i][j - 1], size[i - 1][j], size[i - 1][j - 1]) + 1 max_size = max(max_size, size[i][j]) else: size[i][j] = 0 return max_size * max_size
C++:
class Solution { public: int maximalSquare(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int m = matrix.size(), n = matrix[0].size(), res = 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (i == 0 || j == 0) dp[i][j] = matrix[i][j] - ‘0‘; else if (matrix[i][j] == ‘1‘) { dp[i][j] = min(dp[i - 1][j - 1], min(dp[i][j - 1], dp[i - 1][j])) + 1; } res = max(res, dp[i][j]); } } return res * res; } };
C++:
class Solution { public: int maximalSquare(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int m = matrix.size(), n = matrix[0].size(), res = 0, pre = 0; vector<int> dp(m + 1, 0); for (int j = 0; j < n; ++j) { for (int i = 1; i <= m; ++i) { int t = dp[i]; if (matrix[i - 1][j] == ‘1‘) { dp[i] = min(dp[i], min(dp[i - 1], pre)) + 1; res = max(res, dp[i]); } else { dp[i] = 0; } pre = t; } } return res * res; } };