Java并发编程

Posted autumnlevel

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java并发编程相关的知识,希望对你有一定的参考价值。

文章目录

并发编程基础知识

1. 并发编程的优缺点

为什么要使用并发编程(并发编程的优点)

  • 充分利用多核CPU的计算能力:通过并发编程的形式可以将多核CPU的计算能力发挥到极致,性能得到提升
  • 方便进行业务拆分,提升系统并发能力和性能

并发编程有什么缺点

并发编程的目的就是为了能提高程序的执行效率,提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、上下文切换、线程安全、死锁等问题。

2. 什么叫线程安全?servlet 是线程安全吗?

线程安全是编程中的术语,指某个方法在多线程环境中被调用时,能够正确地处理多个线程之间的共享变量,使程序功能正确完成。

Servlet 不是线程安全的,servlet 是单实例多线程的,当多个线程同时访问同一个方法,是不能保证共享变量的线程安全性的。

Struts2 的 action 是多实例多线程的,是线程安全的,每个请求过来都会 new 一个新的 action 分配给这个请求,请求完成后销毁。

SpringMVC 的 Controller 是线程安全的吗?不是的,和 Servlet 类似的处理流程。

Struts2 好处是不用考虑线程安全问题;Servlet 和 SpringMVC 需要考虑线程安全问题,但是性能可以提升,不用处理太多的 gc,可以使用 ThreadLocal 来处理多线程的问题。

3. 并发编程三要素是什么?在 Java 程序中怎么保证多线程的运行安全?

并发编程三要素(线程的安全性问题体现在):

原子性:一个或多个操作要么全部执行成功要么全部执行失败。

可见性:一个线程对共享变量的修改,另一个线程能够立刻看到。

有序性:程序执行的顺序按照代码的先后顺序执行,避免指令重排。

出现线程安全问题的原因:

  • 线程切换带来的原子性问题
  • 缓存导致的可见性问题
  • 编译优化带来的有序性问题

解决办法:

  • JDK Atomic开头的原子类、synchronized、lock,可以解决原子性问题
  • volatile、synchronized、lock,可以解决可见性问题
  • volatile、Happens-Before 规则可以解决有序性问题

4. 并行和并发有什么区别?

  • 串行:多个任务在一个线程上按顺序执行。由于任务都在一个线程执行所以不存在线程不安全情况,也就不存在临界区的问题。
  • 并发:多个任务在一个 CPU 核上按细分的时间片轮流(交替)执行,从逻辑上来看那些任务是同时执行。
  • 并行:单位时间内,多个 CPU 同时处理多个任务,是真正意义上的“同时进行”。

做一个形象的比喻:

串行 = 一个队列和一台咖啡机。

并发 = 两个队列和一台咖啡机。

并行 = 两个队列和两台咖啡机。

线程和进程的区别

1. 什么是线程和进程?

进程

一个在内存中运行的应用程序。每个进程都有自己独立的一块内存空间,一个进程可以有多个线程,比如在Windows系统中,一个运行的xx.exe就是一个进程。

线程

进程中的一个执行任务(控制单元),负责当前进程中程序的执行。一个进程至少有一个线程,一个进程可以运行多个线程,多个线程可共享数据。

2. 进程与线程的区别

线程具有许多传统进程所具有的特征,故又称为轻型进程(Light—Weight Process)或进程元;而把传统的进程称为重型进程(Heavy—Weight Process)。在引入了线程的操作系统中,通常一个进程都有若干个线程,至少包含一个线程。

根本区别:进程是操作系统资源分配的基本单位,而线程是处理器任务调度和执行的基本单位。

资源开销和内存分配:每个进程都有独立的代码和数据空间(程序上下文),进程之间的切换会有较大的开销;线程可以看做轻量级的进程,同一类线程共享代码和数据空间,每个线程都有自己独立的运行栈和程序计数器(PC),线程之间切换的开销小。

包含关系:线程是进程的一部分。一个进程至少有一个线程,一个进程可以运行多个线程。

影响关系:一个进程崩溃后,在保护模式下不会对其他进程产生影响,但是一个线程崩溃整个进程都死掉。所以多进程要比多线程健壮。

执行过程:每个独立的进程有程序入口、顺序执行序列和程序出口。线程不能独立执行,必须依存在进程中,由进程提供多个线程执行控制,两者均可并发执行。

3. 什么是上下文切换?

概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换

4. 守护线程和用户线程有什么区别呢?

守护线程和用户线程

  • 用户 (User) 线程:运行在前台,执行具体的任务,如程序的主线程、连接网络的子线程等都是用户线程
  • 守护 (Daemon) 线程:运行在后台,为其他前台线程服务。也可以说守护线程是 JVM 中非守护线程的 “佣人”。一旦所有用户线程都结束运行,守护线程会随 JVM 一起结束工作

main 函数所在的线程就是一个用户线程,main 函数启动的同时在 JVM 内部同时还启动了好多守护线程,比如垃圾回收线程。

比较明显的区别之一是用户线程结束,JVM 退出,不管这个时候有没有守护线程运行。而守护线程不会影响 JVM 的退出。

注意事项:

  1. setDaemon(true)必须在start()方法前执行,否则会抛出 IllegalThreadStateException 异常
  2. 在守护线程中产生的新线程也是守护线程
  3. 不是所有的任务都可以分配给守护线程来执行,比如读写操作或者计算逻辑
  4. 守护 (Daemon) 线程中不能依靠 finally 块来确保执行关闭或清理资源的逻辑。因为一旦所有用户线程都结束运行,守护线程会随 JVM 一起结束工作,所以守护 (Daemon) 线程中的 finally 语句块可能无法被执行。

5. 什么是线程死锁

百度百科:死锁是指两个或两个以上的进程(线程)在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程(线程)称为死锁进程(线程)。

如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。

下面通过一个例子来说明线程死锁,代码模拟了上图的死锁的情况 (代码来源于《并发编程之美》):

public class DeadLockDemo 
   private static Object resource1 = new Object();//资源 1
   private static Object resource2 = new Object();//资源 2

   public static void main(String[] args) 
       new Thread(() -> 
           synchronized (resource1) 
               System.out.println(Thread.currentThread() + "get resource1");
               try 
                   Thread.sleep(1000);
               catch (InterruptedException e) 
                   e.printStackTrace();
              
               System.out.println(Thread.currentThread() + "waiting get resource2");
               synchronized (resource2) 
                   System.out.println(Thread.currentThread() + "get resource2");
              
          
      , "线程 1").start();

       new Thread(() -> 
           synchronized (resource2) 
               System.out.println(Thread.currentThread() + "get resource2");
               try 
                   Thread.sleep(1000);
               catch (InterruptedException e) 
                   e.printStackTrace();
              
               System.out.println(Thread.currentThread() + "waiting get resource1");
               synchronized (resource1) 
                   System.out.println(Thread.currentThread() + "get resource1");
              
          
      , "线程 2").start();
  

输出结果

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过Thread.sleep(1000)方法让线程 A 休眠 1s ,为的是让线程 B 得到CPU执行权,然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。上面的例子符合产生死锁的四个必要条件。

6. 形成死锁的四个必要条件是什么

  1. 互斥条件:线程(进程)对于所分配到的资源具有排它性,即一个资源只能被一个线程(进程)占用,直到被该线程(进程)释放
  2. 请求与保持条件:一个线程(进程)因请求被占用资源而发生阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:线程(进程)已获得的资源在末使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
  4. 循环等待条件:当发生死锁时,所等待的线程(进程)必定会形成一个环路(类似于死循环),造成永久阻塞

7. 如何避免线程死锁

我们只要破坏产生死锁的四个条件中的其中一个就可以了。

破坏互斥条件

这个条件我们没有办法破坏,因为我们用锁本来就是想让他们互斥的(临界资源需要互斥访问)。

破坏请求与保持条件

一次性申请所有的资源,会降低并发能力,一般不破坏请求与保持条件。

破坏不剥夺条件

占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。

破坏循环等待条件

靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。

我们对线程 2 的代码修改成下面这样就不会产生死锁了。

new Thread(() -> 
   synchronized (resource1) 
       System.out.println(Thread.currentThread() + "get resource1");
       try 
           Thread.sleep(1000);
       catch (InterruptedException e) 
           e.printStackTrace();
      
       System.out.println(Thread.currentThread() + "waiting get resource2");
       synchronized (resource2) 
           System.out.println(Thread.currentThread() + "get resource2");
      
  
, "线程 2").start();

输出结果

Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2

我们分析一下上面的代码为什么避免了死锁的发生?

线程 1 首先获得到 resource1 的监视器锁,这时候线程 2 就获取不到了。然后线程 1 再去获取 resource2 的监视器锁,可以获取到。然后线程 1 释放了对 resource1、resource2 的监视器锁的占用,线程 2 获取到就可以执行了。这样就破坏了破坏循环等待条件,因此避免了死锁。

创建线程的三种方式

1. 创建线程有哪几种方式?

创建线程有三种方式:

  • 继承 Thread 类;
  • 实现 Runnable 接口;
  • 实现 Callable 接口;

继承 Thread 类

步骤

  1. 定义一个Thread类的子类,重写run方法,将相关逻辑实现,run()方法就是线程要执行的业务逻辑方法
  2. 创建自定义的线程子类对象
  3. 调用子类实例的star()方法来启动线程
public class MyThread extends Thread 

   @Override
   public void run() 
       System.out.println(Thread.currentThread().getName() + " run()方法正在执行...");
  


public class TheadTest 

   public static void main(String[] args) 
       MyThread myThread = new MyThread(); 
       myThread.start();
       System.out.println(Thread.currentThread().getName() + " main()方法执行结束");
  


运行结果

main main()方法执行结束
Thread-0 run()方法正在执行...

实现 Runnable 接口

步骤

  1. 定义Runnable接口实现类MyRunnable,并重写run()方法
  2. 创建MyRunnable实例myRunnable,以myRunnable作为target创建Thead对象,该Thread对象才是真正的线程对象
  3. 调用线程对象的start()方法
public class MyRunnable implements Runnable 

   @Override
   public void run() 
       System.out.println(Thread.currentThread().getName() + " run()方法执行中...");
  


public class RunnableTest 

    public static void main(String[] args) 
        MyRunnable myRunnable = new MyRunnable();
        Thread thread = new Thread(myRunnable);
        thread.start();
        System.out.println(Thread.currentThread().getName() + " main()方法执行完成");
    


执行结果

main main()方法执行完成
Thread-0 run()方法执行中...

实现 Callable 接口

步骤

  1. 创建实现Callable接口的类myCallable
  2. 以myCallable为参数创建FutureTask对象
  3. 将FutureTask作为参数创建Thread对象
  4. 调用线程对象的start()方法
public class MyCallable implements Callable<Integer> 

    @Override
    public Integer call() 
        System.out.println(Thread.currentThread().getName() + " call()方法执行中...");
        return 1;
    


public class CallableTest 

    public static void main(String[] args) 
        FutureTask<Integer> futureTask = new FutureTask<Integer>(new MyCallable());
        Thread thread = new Thread(futureTask);
        thread.start();

        try 
            Thread.sleep(1000);
            System.out.println("返回结果 " + futureTask.get());
         catch (InterruptedException e) 
            e.printStackTrace();
         catch (ExecutionException e) 
            e.printStackTrace();
        
        System.out.println(Thread.currentThread().getName() + " main()方法执行完成");
    


执行结果

Thread-0 call()方法执行中...
返回结果 1
main main()方法执行完成

2. 说一下 runnable 和 callable 有什么区别?

相同点

  • 都是接口

  • 都可以编写多线程程序

  • 都采用Thread.start()启动线程

主要区别

  • Runnable 接口 run 方法无返回值;Callable 接口 call 方法有返回值,是个泛型,和Future、FutureTask配合可以用来获取异步执行的结果
  • Runnable 接口 run 方法只能抛出运行时异常,且无法捕获处理;Callable 接口 call 方法允许抛出异常,可以获取异常信息

:Callalbe接口支持返回执行结果,需要调用FutureTask.get()得到,此方法会阻塞主进程的继续往下执行,如果不调用不会阻塞。

3. 线程的 run()和 start()有什么区别?为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?

每个线程都是通过某个特定Thread对象所对应的方法run()来完成其操作的,run()方法称为线程体。通过调用Thread类的start()方法来启动一个线程。也就是说start() 方法用于启动线程,run() 方法用于执行线程任务。run() 可以重复调用,而 start() 只能调用一次。

start()方法来启动一个线程,真正实现了多线程运行。调用start()方法无需等待run方法体代码执行完毕,可以直接继续执行其他的代码;此时线程是处于就绪状态,并没有运行。然后通过此Thread类调用方法run()来完成其运行状态, run()方法运行结束, 此线程终止。然后CPU再调度其它线程。

run()方法是在本线程里的,只是线程里的一个函数,而不是多线程的。如果直接调用run(),其实就相当于是调用了一个普通函数而已,直接调用run()方法必须等待run()方法执行完毕才能执行下面的代码,所以执行路径还是只有一条,根本就没有线程的特征,所以在多线程执行时要使用start()方法而不是run()方法。

4. 什么是 Future 和 FutureTask?

Future 接口表示异步计算的任务,他提供了判断任务是否完成,中断任务,并可以通过get方法获取任务执行结果,该方法会阻塞直到任务返回结果。因为Future只是一个接口,所以是无法直接用来创建对象使用的,因此就有了下面的FutureTask。

FutureTask 类间接实现了 Future 接口,可以看出RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现了RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。

线程的状态和基本操作

1. 说说线程的生命周期及五种基本状态?

  1. 新建(new):新创建了一个线程对象。

  2. 可运行(runnable):线程对象创建后,当调用线程对象的 start()方法,该线程处于就绪状态,等待被线程调度选中,获取cpu的使用权。

  3. 运行(running):可运行状态(runnable)的线程获得了cpu时间片(timeslice),执行程序代码。注:就绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;

  4. 阻塞(block):处于运行状态中的线程由于某种原因,暂时放弃对 CPU的使用权,停止执行,此时进入阻塞状态,直到其再次进入到就绪状态,才有机会再次被 CPU 调用以进入到运行状态。

    阻塞的情况分三种:

    (一). 等待阻塞:运行状态中的线程执行 wait()方法,JVM会把该线程放入等待队列(waitting queue)中,使本线程进入到等待阻塞状态;(二). 同步阻塞:线程在获取 synchronized 同步锁失败(因为锁被其它线程所占用),则JVM会把该线程放入锁池(lock pool)中,线程会进入同步阻塞状态;(三). 其他阻塞:通过调用线程的 sleep()或 join()或发出了 I/O 请求时,线程会进入到阻塞状态。当 sleep()状态超时、join()等待线程终止或者超时、或者 I/O 处理完毕时,线程重新转入就绪状态。

  5. 死亡(dead):线程run()、main()方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期,死亡的线程不可再次复生。

Java规定的线程状态

关于线程生命周期的不同状态,在 Java 5 以后,线程状态被明确定义在其公共内部枚举类型 java.lang.Thread.State 中,分别是:

  • 新建(NEW),表示线程被创建出来还没真正启动的状态,可以认为它是个 Java 内部状态。

  • 就绪(RUNNABLE),表示该线程已经在 JVM 中执行,当然由于执行需要计算资源,它可能是正在运行,也可能还在等待系统分配给它 CPU 片段,在就绪队列里面排队。

    在其他一些分析中,会额外区分一种状态 RUNNING,但是从 Java API 的角度,并不能表示出来。

  • 阻塞(BLOCKED),阻塞表示线程在等待 Monitor lock。比如,线程试图通过 synchronized 去获取某个锁,但是其他线程已经独占了,那么当前线程就会处于阻塞状态。

  • 等待(WAITING),表示正在等待其他线程采取某些操作。一个常见的场景是类似生产者消费者模式,发现任务条件尚未满足,就让当前消费者线程等待(wait),另外的生产者线程去准备任务数据,然后通过类似 notify 等动作,通知消费线程可以继续工作了。Thread.join() 也会令线程进入等待状态。

  • 计时等待(TIMED_WAIT),其进入条件和等待状态类似,但是调用的是存在超时条件的方法,比如 wait 或 join 等方法的指定超时时间

  • 终止(TERMINATED),不管是意外退出还是正常执行结束,线程已经完成使命,终止运行,也有人把这个状态叫作死亡。

2. Java 中用到的线程调度算法是什么?

线程调度是指按照特定机制为多个线程分配 CPU 的使用权。Java 虚拟机的一项任务就是负责线程的调度。

有两种调度模型:分时调度模型和抢占式调度模型。Java虚拟机采用抢占式调度模型。

分时调度模型:让所有的线程轮流获得 cpu 的使用权,平均分配每个线程占用的 CPU 的时间片。

抢占式调度模型:根据线程优先级、线程饥饿情况等数据算出一个总的优先级,优先让可运行池中优先级高的线程占用CPU,如果可运行池中的线程优先级相同,那么就随机选择一个线程,使其占用CPU。

3. 请说出与线程同步以及线程调度相关的方法。

(1) wait():使一个线程处于等待状态,并且释放所持有的对象的锁;

(2)sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,sleep() 不释放锁,调用此方法要处理 InterruptedException 异常;

(3)yield():使当前线程从运行状态变为就绪状态;

(4)notify():唤醒一个处于等待状态的线程,当然在调用此方法的时候,并不能确切的唤醒某一个等待状态的线程,而是由 JVM 确定唤醒哪个线程,而且与优先级无关;

(5)notifyAll():唤醒所有处于等待状态的线程,该方法并不是将对象的锁给所有线程,而是让它们竞争,只有获得锁的线程才能进入就绪状态;

4. sleep() 和 wait() 有什么区别?

两者都可以暂停线程的执行,调用方法时都会抛出 InterruptedException 异常

  • 类的不同:sleep() 是 Thread线程类的静态方法,wait() 是 Object类的方法。
  • 是否释放锁:sleep() 不释放锁;wait() 释放锁。
  • 用途不同:wait() 方法通常被用于线程间交互/通信,sleep() 通常被用于暂停线程执行。
  • 用法不同:wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify() 或者 notifyAll() 方法。或者可以使用wait(long timeout)超时后线程会自动苏醒。sleep() 方法执行完成后,线程会自动苏醒。

5. 线程的 sleep()方法和 yield()方法有什么区别?

(1) sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;

(2) 线程执行 sleep()方法后转入阻塞(blocked)状态,而执行 yield()方法后转入就绪(ready)状态;

(3)sleep()方法声明抛出 InterruptedException,而 yield()方法没有声明任何异常;

(4)sleep()方法比 yield()方法(跟操作系统 CPU 调度相关)具有更好的可移植性,通常不建议使用yield()方法来控制并发线程的执行。

6. 为什么线程通信的方法 wait(), notify()和 notifyAll()被定义在 Object 类里?

Java中,任何对象都可以作为锁,并且 wait(),notify()等方法用于释放对象的锁或者唤醒线程,在 Java 的线程中并没有可供任何对象使用的锁,所以任意对象调用方法一定定义在Object类中。

wait(), notify()和 notifyAll()这些方法需要在同步代码块中调用

有的人会说,既然是线程放弃对象锁,那也可以把wait()定义在Thread类里面啊,新定义的线程继承于Thread类,也不需要重新定义wait()方法的实现。然而,这样做有一个非常大的问题,一个线程完全可以持有很多锁,你一个线程放弃锁的时候,到底要放弃哪个锁?当然了,这种设计并不是不能实现,只是管理起来更加复杂。

综上所述,wait()、notify()和notifyAll()方法要定义在Object类中。

7. 为什么 wait(), notify()和 notifyAll()必须在同步方法或者同步块中被调用?

当一个线程需要调用对象的 wait()方法的时候,这个线程必须拥有该对象的锁,接着它就会释放这个对象锁并进入等待状态。

同样的,当一个线程需要调用对象的 notify()方法时,这个线程必须拥有该对象的锁,然后它会释放这个对象的锁,以便其他在等待的线程就可以得到这个对象锁。

由于所有的这些方法都需要线程持有对象的锁,这样就只能通过同步来实现,所以他们只能在同步方法或者同步块中被调用。

8. Java 中你怎样唤醒一个阻塞的线程?

首先 ,wait()、notify() 方法是针对对象的,调用任意对象的 wait()方法都将导致线程阻塞,阻塞的同时也将释放该对象的锁,相应地,调用任意对象的 notify()方法则将随机解除该对象阻塞的线程,但它需要重新获取该对象的锁,直到获取成功才能往下执行;

其次,wait、notify 方法必须在 synchronized 块或方法中调用,并且要保证同步块或方法的锁对象与调用 wait、notify 方法的锁对象是同一个,因此,在调用 wait 方法之前当前线程就已经成功获取对象的锁,执行 wait方法阻塞后,当前线程就将之前获取的对象锁释放。

9. Java 如何实现多线程之间的通讯和协作?

Java中线程通信协作的最常见的两种方式:

  • syncrhoized加锁的线程的Object类的wait()/notify()/notifyAll()/sleep()/yield()/join()
  • ReentrantLock类加锁的线程的Condition类的await()/signal()/signalAll()
  • 并发工具类:Semaphore信号量,CountDownLatch 倒计时器,CyclicBarrier循环栅栏

线程间直接的数据交换:

  • 通过管道进行线程间通信:1)字节流;2)字符流

比如说最经典的生产者-消费者模型:当队列满时,生产者需要等待队列有空间才能继续往里面放入商品,而在等待的期间内,生产者必须释放对临界资源(即队列)的占用权。因为生产者如果不释放对临界资源的占用权,那么消费者就无法消费队列中的商品,就不会让队列有空间,那么生产者就会一直无限等待下去。因此,一般情况下,当队列满时,会让生产者交出对临界资源的占用权,并进入挂起状态。然后等待消费者消费了商品,然后消费者通知生产者队列有空间了

Java并发编程:Synchronized及其实现原理

Java并发编程系列:

一、Synchronized的基本使用

  Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。Synchronized的作用主要有三个:(1)确保线程互斥的访问同步代码(2)保证共享变量的修改能够及时可见(3)有效解决重排序问题。从语法上讲,Synchronized总共有三种用法:

  (1)修饰普通方法

  (2)修饰静态方法

  (3)修饰代码块

  接下来我就通过几个例子程序来说明一下这三种使用方式(为了便于比较,三段代码除了Synchronized的使用方式不同以外,其他基本保持一致)。

1、没有同步的情况:

代码段一:

复制代码
 1 package com.paddx.test.concurrent;
 2 
 3 public class SynchronizedTest {
 4     public void method1(){
 5         System.out.println("Method 1 start");
 6         try {
 7             System.out.println("Method 1 execute");
 8             Thread.sleep(3000);
 9         } catch (InterruptedException e) {
10             e.printStackTrace();
11         }
12         System.out.println("Method 1 end");
13     }
14 
15     public void method2(){
16         System.out.println("Method 2 start");
17         try {
18             System.out.println("Method 2 execute");
19             Thread.sleep(1000);
20         } catch (InterruptedException e) {
21             e.printStackTrace();
22         }
23         System.out.println("Method 2 end");
24     }
25 
26     public static void main(String[] args) {
27         final SynchronizedTest test = new SynchronizedTest();
28 
29         new Thread(new Runnable() {
30             @Override
31             public void run() {
32                 test.method1();
33             }
34         }).start();
35 
36         new Thread(new Runnable() {
37             @Override
38             public void run() {
39                 test.method2();
40             }
41         }).start();
42     }
43 }
复制代码

执行结果如下,线程1和线程2同时进入执行状态,线程2执行速度比线程1快,所以线程2先执行完成,这个过程中线程1和线程2是同时执行的。

Method 1 start
Method 1 execute
Method 2 start
Method 2 execute
Method 2 end
Method 1 end

 2、对普通方法同步:

代码段二:

复制代码
 1 package com.paddx.test.concurrent;
 2 
 3 public class SynchronizedTest {
 4     public synchronized void method1(){
 5         System.out.println("Method 1 start");
 6         try {
 7             System.out.println("Method 1 execute");
 8             Thread.sleep(3000);
 9         } catch (InterruptedException e) {
10             e.printStackTrace();
11         }
12         System.out.println("Method 1 end");
13     }
14 
15     public synchronized void method2(){
16         System.out.println("Method 2 start");
17         try {
18             System.out.println("Method 2 execute");
19             Thread.sleep(1000);
20         } catch (InterruptedException e) {
21             e.printStackTrace();
22         }
23         System.out.println("Method 2 end");
24     }
25 
26     public static void main(String[] args) {
27         final SynchronizedTest test = new SynchronizedTest();
28 
29         new Thread(new Runnable() {
30             @Override
31             public void run() {
32                 test.method1();
33             }
34         }).start();
35 
36         new Thread(new Runnable() {
37             @Override
38             public void run() {
39                 test.method2();
40             }
41         }).start();
42     }
43 }
复制代码

执行结果如下,跟代码段一比较,可以很明显的看出,线程2需要等待线程1的method1执行完成才能开始执行method2方法。

Method 1 start
Method 1 execute
Method 1 end
Method 2 start
Method 2 execute
Method 2 end

3、静态方法(类)同步

代码段三:

复制代码
 1 package com.paddx.test.concurrent;
 2  
 3  public class SynchronizedTest {
 4      public static synchronized void method1(){
 5          System.out.println("Method 1 start");
 6          try {
 7              System.out.println("Method 1 execute");
 8              Thread.sleep(3000);
 9          } catch (InterruptedException e) {
10              e.printStackTrace();
11          }
12          System.out.println("Method 1 end");
13      }
14  
15      public static synchronized void method2(){
16          System.out.println("Method 2 start");
17          try {
18              System.out.println("Method 2 execute");
19              Thread.sleep(1000);
20          } catch (InterruptedException e) {
21              e.printStackTrace();
22          }
23          System.out.println("Method 2 end");
24      }
25  
26      public static void main(String[] args) {
27          final SynchronizedTest test = new SynchronizedTest();
28          final SynchronizedTest test2 = new SynchronizedTest();
29  
30          new Thread(new Runnable() {
31              @Override
32              public void run() {
33                  test.method1();
34              }
35          }).start();
36  
37          new Thread(new Runnable() {
38              @Override
39              public void run() {
40                  test2.method2();
41              }
42          }).start();
43      }
44  }
复制代码

  执行结果如下,对静态方法的同步本质上是对类的同步(静态方法本质上是属于类的方法,而不是对象上的方法),所以即使test和test2属于不同的对象,但是它们都属于SynchronizedTest类的实例,所以也只能顺序的执行method1和method2,不能并发执行。

Method 1 start
Method 1 execute
Method 1 end
Method 2 start
Method 2 execute
Method 2 end

4、代码块同步

代码段四:

复制代码
 1 package com.paddx.test.concurrent;
 2 
 3 public class SynchronizedTest {
 4     public void method1(){
 5         System.out.println("Method 1 start");
 6         try {
 7             synchronized (this) {
 8                 System.out.println("Method 1 execute");
 9                 Thread.sleep(3000);
10             }
11         } catch (InterruptedException e) {
12             e.printStackTrace();
13         }
14         System.out.println("Method 1 end");
15     }
16 
17     public void method2(){
18         System.out.println("Method 2 start");
19         try {
20             synchronized (this) {
21                 System.out.println("Method 2 execute");
22                 Thread.sleep(1000);
23             }
24         } catch (InterruptedException e) {
25             e.printStackTrace();
26         }
27         System.out.println("Method 2 end");
28     }
29 
30     public static void main(String[] args) {
31         final SynchronizedTest test = new SynchronizedTest();
32 
33         new Thread(new Runnable() {
34             @Override
35             public void run() {
36                 test.method1();
37             }
38         }).start();
39 
40         new Thread(new Runnable() {
41             @Override
42             public void run() {
43                 test.method2();
44             }
45         }).start();
46     }
47 }
复制代码

执行结果如下,虽然线程1和线程2都进入了对应的方法开始执行,但是线程2在进入同步块之前,需要等待线程1中同步块执行完成。

Method 1 start
Method 1 execute
Method 2 start
Method 1 end
Method 2 execute
Method 2 end

二、Synchronized 原理

  如果对上面的执行结果还有疑问,也先不用急,我们先来了解Synchronized的原理,再回头上面的问题就一目了然了。我们先通过反编译下面的代码来看看Synchronized是如何实现对代码块进行同步的:

复制代码
1 package com.paddx.test.concurrent;
2 
3 public class SynchronizedDemo {
4     public void method() {
5         synchronized (this) {
6             System.out.println("Method 1 start");
7         }
8     }
9 }
复制代码

反编译结果:

关于这两条指令的作用,我们直接参考JVM规范中描述:

monitorenter :

Each object is associated with a monitor. A monitor is locked if and only if it has an owner. The thread that executes monitorenter attempts to gain ownership of the monitor associated with objectref, as follows:
• If the entry count of the monitor associated with objectref is zero, the thread enters the monitor and sets its entry count to one. The thread is then the owner of the monitor.
• If the thread already owns the monitor associated with objectref, it reenters the monitor, incrementing its entry count.
• If another thread already owns the monitor associated with objectref, the thread blocks until the monitor\'s entry count is zero, then tries again to gain ownership.

这段话的大概意思为:

每个对象有一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:

1、如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者。

2、如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1.

3.如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权。

monitorexit: 

The thread that executes monitorexit must be the owner of the monitor associated with the instance referenced by objectref.
The thread decrements the entry count of the monitor associated with objectref. If as a result the value of the entry count is zero, the thread exits the monitor and is no longer its owner. Other threads that are blocking to enter the monitor are allowed to attempt to do so.

这段话的大概意思为:

执行monitorexit的线程必须是objectref所对应的monitor的所有者。

指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。 

  通过这两段描述,我们应该能很清楚的看出Synchronized的实现原理,Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。

  我们再来看一下同步方法的反编译结果:

源代码:

复制代码
1 package com.paddx.test.concurrent;
2 
3 public class SynchronizedMethod {
4     public synchronized void method() {
5         System.out.println("Hello World!");
6     }
7 }
复制代码

反编译结果:

  从反编译的结果来看,方法的同步并没有通过指令monitorenter和monitorexit来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标示符。JVM就是根据该标示符来实现方法的同步的:当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。 其实本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。

三、运行结果解释

  有了对Synchronized原理的认识,再来看上面的程序就可以迎刃而解了。

1、代码段2结果:

  虽然method1和method2是不同的方法,但是这两个方法都进行了同步,并且是通过同一个对象去调用的,所以调用之前都需要先去竞争同一个对象上的锁(monitor),也就只能互斥的获取到锁,因此,method1和method2只能顺序的执行。

2、代码段3结果:

  虽然test和test2属于不同对象,但是test和test2属于同一个类的不同实例,由于method1和method2都属于静态同步方法,所以调用的时候需要获取同一个类上monitor(每个类只对应一个class对象),所以也只能顺序的执行。

3、代码段4结果:

  对于代码块的同步实质上需要获取Synchronized关键字后面括号中对象的monitor,由于这段代码中括号的内容都是this,而method1和method2又是通过同一的对象去调用的,所以进入同步块之前需要去竞争同一个对象上的锁,因此只能顺序执行同步块。

四 总结

  Synchronized是Java并发编程中最常用的用于保证线程安全的方式,其使用相对也比较简单。但是如果能够深入了解其原理,对监视器锁等底层知识有所了解,一方面可以帮助我们正确的使用Synchronized关键字,另一方面也能够帮助我们更好的理解并发编程机制,有助我们在不同的情况下选择更优的并发策略来完成任务。对平时遇到的各种并发问题,也能够从容的应对。

 

以上是关于Java并发编程的主要内容,如果未能解决你的问题,请参考以下文章

Java面试系列之并发编程专题-Synchronized灵魂拷问

Java面试系列之并发编程专题-Synchronized灵魂拷问

Java工程师怎样才能通过高并发面试这一关?

一个月面试了3家大厂Java岗(已拿offer),分享一些心得给备战的各位程序员!

Java面试题:Java工程师跳槽经验分享

面试java工作时应该注意什么? java面试经验分享