MySQL高级第八篇:关联查询子查询和排序相关优化

Posted 安东子丶

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL高级第八篇:关联查询子查询和排序相关优化相关的知识,希望对你有一定的参考价值。

mysql高级第八篇:关联查询、子查询和排序相关优化

一、关联查询的优化

情况1:左外连接(和右外连接相似)

  • 对于左外连接来说:
SELECT SQL_NO_CACHE * FROM a LEFT JOIN b ON a.字段 = b.字段;
  • 如果不加索引,他们两个表都会进行全表扫描,MySQL会自动使用上缓存提高效率。
  • 如果只添加一个索引,一定要给被驱动表,也就是 b 表加, 因为 a 为主表,无论加与不加都会全部查询出来。
  • 但 a,b 表的那俩条件字段一定要相同类型,否则类型转换会导致索引失效。

情况2:内连接

SELECT SQL_NO_CACHE * FROM a INNER JOIN b ON a.字段 = b.字段;
  • 对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的
  • 如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表出现。
  • 在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。小表驱动大表

JOIN 语句原理

  • JOIN 方式连接多个表,本质是各个表之间数据的循环匹配
  • MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则 JOIN 关联的执行时间会非常长。
  • 在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。

如下:

  • 驱动表就是主表,被驱动表就是从表、非驱动表。
  • 简单嵌套循环
    • 两个表都没有索引,每次从主表A取一条数据,遍历从表B匹配,将匹配到的数据放到 result
  • 索引嵌套循环
    • 其优化的思路主要是为了减少内层表数据的匹配次数,所以要求被驱动表上必须有索引才行。
    • 通过外层表匹配条件直接与内层表索引进行匹配,避免和内层表的每条记录去进行比较,这样极大的减少了对内层表的匹配次数。
    • 如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高
  • 块嵌套循环连接
    • 如果存在索引,那么会使用index的方式进行join,如果join的列没有索引,被驱动表要扫描的次数太多了。每次访问被驱动表,其表中的记录都会被加载到内存中,然后再从驱动表中取一条与其匹配,匹配结束后清除内存,然后再从驱动表中加载一条记录,然后把被驱动表的记录在加载到内存匹配,这样周而复始,大大增加了1O的次数
    • 为了减少被驱动表的IO次数,就出现了块嵌套循环连接的方式。
    • 不再是逐条获取驱动表的数据,而是一块一块的获取,引入了join buffer缓冲区,将驱动表join相关的部分数
      据列大小缓存到join bufferr中,然后全表扫描被驱动表,被驱动表的每一条记录一次性和join buffer中的所有驱动表记录进行匹配(内存中操作),将简单嵌套循环中的多次比较合并成一次,降低了被驱动表的访问频率。

      缓存时不光缓存关联表的列,select 的列也会缓存起来,所以,查询时尽量减少不必要的字段。
      注意:小表驱动大表的含义——小的结果集驱动大的结果集,为了减少内存循环次数。

从MySQL8.0开始,废弃了BNLJ(块嵌套查询),加入了 hash join,hash join是大数据集连接时的常用方式,但他只能应用于等值连接。

二、子查询优化

  • 使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。

  • 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作

  • 子查询是MySQL的一项重要的功能,可以帮助我们通过一个SQL语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:

    • ①执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表。这样会消耗更多的CPU和I/O资源,产生大量的慢查询。
    • ②子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。
    • ③对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
  • 在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询不需要建立临时表,其速度比子查询要快,如果查询中使用索引的话,性能就会更好。

三、排序相关优化

问题:WHERE条件上加了索引,为什么还要在 ORDER BY字段加索引?

  • 在MySQL中,支持两种排序方式,分别是 FileSort 和 Index 排序。
  • lndex排序中,索引可以保证数据的有序性,不需要再进行排序,效率更高。
  • FileSort排序则一般在内存中进行排序,占用CPU较多。如果待排结果较大,会产生临时文件I/O到磁盘进行排序的情况,效率较低。

优化建议:

  • 1.SQL中,可以在 WHERE 子句 和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中避免全表扫描,在ORDER BY子句避免使用 FileSort 排序。
  • 2.尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列,如果不同就使用联合索引。
  • 3.无法使用lndex时,需要对 FileSort 方式进行调优。

例子:

其实具体是否使用索引,还是由优化器根据数据量计算决定的,我们添加索引,最起码是提供了一种方案。

总之,在两个索引同时存在时,MySQL会自动选择最优的方案,但是,随着数据量的变化,选择的索引也会随之变化。
当 范围条件 和 GROUP BY 或者 ORDER BY 字段出现二选一时,优先观察条件字段的过滤数量,如果过滤的足够多,而需要排序的数据不多时,优先把索引放在范围字段,反之亦然。

四、GROUP BY 注意事项

  • group by使用索引的原则几乎跟order by一致,group by即使没有过滤条件用到索引,也可以直接使用索引。
  • group by 先排序再分组,遵照索引建的最佳左前缀法则
  • where效率高于having,能写在where限定的条件就不要写在having中了
  • 减少使用order by,能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct 这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
  • 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。

MySQL高级篇——索引解决查询相关的优化问题

文章目录:

1.数据准备

2.内外连接优化

2.1 外连接优化

2.2 内连接优化

3.子查询优化

4.ORDER BY排序优化

5.GROUP BY分组优化

6.LIMIT分页查询优化

7.优先考虑覆盖索引

8.其它查询优化策略

8.1 EXISTS和IN的区分

8.2 COUNT(*)与COUNT(具体字段)效率

8.3 关于SELECT(*)

8.4 LIMIT 1 对优化的影响

8.5 多使用COMMIT


1.数据准备

准备两张表:type、book,每张表中各添加20条数据。

CREATE TABLE IF NOT EXISTS `type` (
		`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
		`card` INT(10) UNSIGNED NOT NULL,
		PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
		`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
		`card` INT(10) UNSIGNED NOT NULL,
		PRIMARY KEY (`bookid`)
);

#向分类表中添加20条记录
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));

#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));

2.内外连接优化

  • 保证被驱动表的JOIN字段已经创建了索引
  • 需要JOIN 的字段,数据类型保持绝对一致。
  • LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
  • INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。
  • 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
  • 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。
  • 衍生表建不了索引

2.1 外连接优化

#确保两张表中只有主键相关的索引
SHOW INDEX FROM book;
SHOW INDEX FROM `type`;

 

 

#写一个简单的左外连接,此时必然两张表都是ALL级别,因为不存在card字段的索引
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

#为book表的card字段建索引
CREATE INDEX Y ON book(card);

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

#再为type表的card字段建索引
CREATE INDEX X ON `type`(card);

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

#此时将book表中作用于card字段的索引删除
DROP INDEX Y ON book;

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

2.2 内连接优化

#删除两张表中多余的索引,只剩主键索引
DROP INDEX Y ON book;
DROP INDEX X ON type;

SHOW INDEX FROM book;
SHOW INDEX FROM `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;

CREATE INDEX Y ON book(card);

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;

CREATE INDEX X ON `type`(card);

#结论:对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;

#删除索引
DROP INDEX Y ON book;
#结论:对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表出现。
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;

#向type表中添加数据(20条数据)
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));

#结论:对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。“小表驱动大表”
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card = book.card;


3.子查询优化

MySQL 4.1 版本开始支持子查询,使用子查询可以进行 SELECT 语句的嵌套查询,即一个 SELECT 查询的结果作为另一个SELECT 语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的 SQL 操作 子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子 查询的执行效率不高。 原因: ① 执行子查询时, MySQL 需要为内层查询语句的查询结果 建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的 CPU IO 资源,产生大量的慢查询。 ② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会受到一定的影响。 ③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。 MySQL 中,可以使用连接( JOIN )查询来替代子查询。 连接查询 不需要建立临时表 ,其 速度比子查询要快 ,如果查询中使用索引的话,性能就会更好。 结论:尽量不要使用 NOT IN 或者 NOT EXISTS ,用 LEFT JOIN xxx ON xx WHERE xx IS NULL 替代

数据准备:需要用到class表,建表相关参考:https://blog.csdn.net/weixin_43823808/article/details/124172443

#创建班级表中班长的索引
CREATE INDEX idx_monitor ON class(monitor);

#查询班长的信息
EXPLAIN 
SELECT * 
FROM student stu1
WHERE stu1.`stuno` IN (
		SELECT monitor
		FROM class c
		WHERE monitor IS NOT NULL
);

上面的这条子查询sql就可以优化为 连接查询:👇👇👇 

EXPLAIN 
SELECT stu1.* 
FROM student stu1 
JOIN class c 
ON stu1.`stuno` = c.`monitor`
WHERE c.`monitor` IS NOT NULL;

#查询不为班长的学生信息
EXPLAIN 
SELECT SQL_NO_CACHE a.* 
FROM student a 
WHERE a.stuno NOT IN (
    SELECT monitor 
	FROM class b 
	WHERE monitor IS NOT NULL
);

通过下面的优化(连接查询),type级别从index提升到了 ref。 

EXPLAIN 
SELECT SQL_NO_CACHE a.*
FROM student a 
LEFT OUTER JOIN class b 
ON a.stuno = b.monitor
WHERE b.monitor IS NULL;


4.ORDER BY排序优化

问题: WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢? 优化建议:         1. SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描 ,在 ORDER BY 子句 避免使用 FileSort 排序 。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。         2. 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。         3. 无法使用 Index 时,需要对 FileSort 方式进行调优。
INDEX a_b_c(a,b,c)
# order by 能使用索引最左前缀 
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC 

# 如果WHERE使用索引的最左前缀定义为常量,则 order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c 

# 不能使用索引进行排序 
- ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */
- WHERE g = const ORDER BY b,c /* 丢失a索引 */
- WHERE a = const ORDER BY c   /* 丢失b索引 */
#删除student和class表中的非主键索引
DROP INDEX idx_age ON student;
DROP INDEX idx_cid ON student;
DROP INDEX idx_monitor ON class;

SHOW INDEX FROM student;
SHOW INDEX FROM class;

#此时表中没有ORDER BY字段的相关索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid; 

EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10; 

#order by时不limit,索引失效,此时并不包含where筛选条件
#创建索引  
CREATE  INDEX idx_age_classid_name ON student (age,classid,NAME);

#不限制,索引失效
EXPLAIN  SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid; 

#以下两种情况均可使用刚建的联合索引
EXPLAIN  SELECT SQL_NO_CACHE age,classid,name,id FROM student ORDER BY age,classid; 

#增加limit过滤条件,使用上索引了。
EXPLAIN  SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10; 

key_len为73,是因为用到了整个联合索引。(age是INT类型4个字节 + 非空1个字节,classid与age同理,name是VARCHAR20:20*3 = 60,再加上非空1个字节、可变长2个字节,60+1+2=63,总共63+5+5=73)。

#创建索引age,classid,stuno
CREATE  INDEX idx_age_classid_stuno ON student (age,classid,stuno); 
SHOW INDEX FROM student;

先展示一下此时student表中都存在哪些索引,下面所说的索引失效是针对下面这张运行结果图中的索引而言的。 

#以下哪些索引失效?
#order by时顺序错误,索引失效
EXPLAIN  SELECT * FROM student ORDER BY classid LIMIT 10; #索引失效
 
EXPLAIN  SELECT * FROM student ORDER BY classid,NAME LIMIT 10; #索引失效

EXPLAIN  SELECT * FROM student ORDER BY NAME,classid,age LIMIT 10; #索引失效

EXPLAIN  SELECT * FROM student ORDER BY classid,age,stuno LIMIT 10; #索引失效

EXPLAIN  SELECT * FROM student ORDER BY age,classid,stuno LIMIT 10; #用idx_age_classid_stuno索引

EXPLAIN  SELECT * FROM student ORDER BY age,classid LIMIT 10; #用索引idx_age_classid_name

EXPLAIN  SELECT * FROM student ORDER BY age LIMIT 10; #用索引idx_age_classid_name
#order by时规则不一致, 索引失效 (顺序错,不索引;方向反,不索引)
EXPLAIN  SELECT * FROM student ORDER BY age DESC, classid ASC LIMIT 10; #索引失效

EXPLAIN  SELECT * FROM student ORDER BY classid DESC, NAME DESC LIMIT 10; #索引失效

EXPLAIN  SELECT * FROM student ORDER BY age ASC,classid DESC LIMIT 10; #索引失效

EXPLAIN  SELECT * FROM student ORDER BY age DESC, classid DESC LIMIT 10; #用索引idx_age_classid_name
#order by和where结合使用时,即使没有limit,也会用到索引
EXPLAIN  SELECT * FROM student WHERE age=45 ORDER BY classid; #用索引idx_age_classid_stuno

EXPLAIN  SELECT * FROM student WHERE age=45 ORDER BY classid,NAME; #用索引idx_age_classid_name

EXPLAIN  SELECT * FROM student WHERE classid=45 ORDER BY age; #索引失效

EXPLAIN  SELECT * FROM student WHERE classid=45 ORDER BY age LIMIT 10; #用索引idx_age_classid_name

CREATE INDEX idx_cid ON student(classid);
EXPLAIN  SELECT * FROM student WHERE  classid=45 ORDER BY age; #用索引idx_cid

关于filesort的相关优化问题:👇👇👇

DROP INDEX idx_age_classid_name ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_cid ON student;
SHOW INDEX FROM student;

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;

#方案一: 为了去掉filesort我们可以把索引建成
CREATE INDEX idx_age_name ON student(age,NAME);

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;

#方案二:
CREATE INDEX idx_age_stuno_name ON student(age,stuno,NAME);

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;

#删除方案二中创建的联合索引
DROP INDEX idx_age_stuno_name ON student;

CREATE INDEX idx_age_stuno ON student(age,stuno);

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME;

结论:         1. 两个索引同时存在, mysql 自动选择最优的方案。(对于这个例子, mysql 选择 idx_age_stuno_name)。但是, 随着数据量的变化,选择的索引也会随之变化的         2. 当【范围条件】和【 group by 或者 order by 】的字段出现二选一时,优先观察条件字段的过 滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段 上。反之,亦然。

5.GROUP BY分组优化

  • group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接 使用索引。
  • group by 先排序再分组,遵照索引建的最佳左前缀法则
  • 当无法使用索引列,增大 max_length_for_sort_data sort_buffer_size 参数的设置
  • where效率高于having,能写在where限定的条件就不要写在having中了
  • 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。order bygroup bydistinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
  • 包含了order bygroup bydistinct这些查询的语句,where条件过滤出来的结果集请保持在1000以内,否则SQL会很慢。

6.LIMIT分页查询优化

#优化分页查询
#思路一
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;

#思路二
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;

7.优先考虑覆盖索引

理解方式一 :索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。 一个索引包含了满足查询结果的数据就叫做覆盖索引。 理解方式二 :非聚簇复合索引的一种形式,它包括在查询里的 SELECT JOIN WHERE 子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。 简单说就是, 索引列 + 主键 包含 SELECT FROM 之间查询的列 好处:         1. 避免 Innodb 表进行索引的二次查询(回表)         2. 可以把随机 IO 变成顺序 IO 加快查询效率 弊端:         索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。

先确保student表中只有一个主键索引,下面做测试:👇👇👇

CREATE INDEX idx_age_name ON student (age,NAME);

EXPLAIN SELECT * FROM student WHERE age <> 20;

EXPLAIN SELECT age,NAME FROM student WHERE age <> 20;

EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';

EXPLAIN SELECT id,age FROM student WHERE NAME LIKE '%abc';


8.其它查询优化策略

8.1 EXISTS和IN的区分

8.2 COUNT(*)COUNT(具体字段)效率

8.3 关于SELECT(*)

8.4 LIMIT 1 对优化的影响

8.5 多使用COMMIT

以上是关于MySQL高级第八篇:关联查询子查询和排序相关优化的主要内容,如果未能解决你的问题,请参考以下文章

MySQL高级篇——索引解决查询相关的优化问题

MySQL从入门到精通高级篇(二十八)子查询优化,排序优化,GROUP BY优化和分页查询优化

MySQL从入门到精通高级篇(二十八)子查询优化,排序优化,GROUP BY优化和分页查询优化

MySQL数据库学习第八篇多表查询

Mysql第八期 子查询

MySQL 系列