图解HIVE累积型快照事实表

Posted 小基基o_O

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图解HIVE累积型快照事实表相关的知识,希望对你有一定的参考价值。

概述

  • 什么是事实表?
    每行数据代表一个业务事件,通常有很多外键(地区、用户…)
    业务事件可以是:下单、支付、退款、评价…
    业务事件有数字度量,如:数量、金额、次数…
    行数较多,列数较少
    每天很多新增

  • 事实表的分类

分类说明特点场景
事务型事实表以每个事务为单位数据只追加不修改一个订单支付
一笔订单退款
周期型快照事实表保留固定时间间隔的数据不会保留所有数据点赞数
累积型快照事实表跟踪业务事实的变化数据可修改订单状态
  • 本文以订单状态表为例

行转多列

1、按订单ID分组,聚合订单状态时间,转为MAP

SELECT
    order_id,
    STR_TO_MAP(CONCAT_WS(',',COLLECT_SET(CONCAT(order_status,'=',operation_time))),',','=') m
FROM
    ods_order_status
GROUP BY
    order_id

打印结果

+--------+----------------------------------------------------------+
|order_id|m                                                         |
+--------+----------------------------------------------------------+
|P2      |[end -> 2020-01-01 23:45:00, start -> 2020-01-01 22:45:00]|
|P3      |[start -> 2020-01-01 23:30:00]                            |
|P1      |[start -> 2020-01-01 08:00:00, end -> 2020-01-01 08:01:00]|
+--------+----------------------------------------------------------+

2、按Key获取MAP值

WITH
    t1 AS (
        SELECT
            order_id,
            STR_TO_MAP(CONCAT_WS(',',COLLECT_SET(CONCAT(order_status,'=',operation_time))),',','=') m
        FROM
            ods_order_status
        GROUP BY
            order_id
    )
SELECT
    order_id,
    m['start'] start_time,
    m['end'] end_time
FROM
    t1

打印结果

+--------+-------------------+-------------------+
|order_id|start_time         |end_time           |
+--------+-------------------+-------------------+
|P2      |2020-01-01 22:45:00|2020-01-01 23:45:00|
|P3      |2020-01-01 23:30:00|null               |
|P1      |2020-01-01 08:00:00|2020-01-01 08:01:00|
+--------+-------------------+-------------------+

数仓详细

数据路径

Sqoop
HIVE
HIVE
HDFS
ODS
DWD
表名表名路径策略备注
ods_order订单表sqoop > hdfs > ods增量变化同步
create_timeoperate_time
此处省略
ods_order_status订单状态流水表sqoop > hdfs > ods增量同步
operate_time
dwd_order订单表ods > dwd未结束订单写到9999-12-31分区
结束订单按结束日期写到日期分区

代码

1、数据准备

-- 建库:e-commerce
DROP DATABASE IF EXISTS ec CASCADE;
CREATE DATABASE ec LOCATION '/ec';
USE ec;
-- 建表:原始层,订单状态表
DROP TABLE IF EXISTS ec.ods_order_status;
CREATE TABLE ec.ods_order_status (
    order_id STRING,
    order_status STRING,
    operation_time STRING)
PARTITIONED BY (ymd STRING)
LOCATION '/ec/ods_order_status';
-- 建表:明细层,订单(累积型快照事实)表
DROP TABLE IF EXISTS ec.dwd_order;
CREATE TABLE ec.dwd_order (
    order_id STRING,
    start_time STRING,
    end_time STRING)
PARTITIONED BY (ymd STRING)
LOCATION '/ec/dwd_order';
-- 造数据,写到原始层
INSERT INTO TABLE ec.ods_order_status PARTITION(ymd='2020-01-01') VALUES
("P1","start","2020-01-01 08:00:00"),
("P1","end","2020-01-01 08:01:00"),
("P2","start","2020-01-01 22:45:00"),
("P3","start","2020-01-01 23:30:00");
INSERT INTO TABLE ec.ods_order_status PARTITION(ymd='2020-01-02') VALUES
("P3","end","2020-01-02 00:15:00"),
("P4","start","2020-01-02 06:30:00");

2、设置动态分区

-- 开启动态分区功能
SET hive.exec.dynamic.partition=true;
-- 设置动态分区为非严格模式
SET hive.exec.dynamic.partition.mode=nonstrict;

3、第一天数据写入

数据查询

WITH
    t1 AS(
        SELECT
            order_id,
            STR_TO_MAP(CONCAT_WS(',',COLLECT_SET(CONCAT(order_status,'=',operation_time))),',','=') m
        FROM ec.ods_order_status
        WHERE ymd='2020-01-01'
        GROUP BY order_id
    )
SELECT
    order_id,
    m['start'] start_time,
    m['end'] end_time,
    CASE
        WHEN m['end'] IS NOT NULL THEN '2020-01-01'
        ELSE '9999-12-31'
    END ymd
FROM t1;

查询结果

数据写入

注意:语法要求WITH写在INSERT前面

WITH
    t1 AS(
        SELECT
            order_id,
            STR_TO_MAP(CONCAT_WS(',',COLLECT_SET(CONCAT(order_status,'=',operation_time))),',','=') m
        FROM ec.ods_order_status
        WHERE ymd='2020-01-01'
        GROUP BY order_id
    )
INSERT OVERWRITE TABLE ec.dwd_order PARTITION(ymd)
SELECT
    order_id,
    m['start'] start_time,
    m['end'] end_time,
    CASE
        WHEN m['end'] IS NOT NULL THEN '2020-01-01'
        ELSE '9999-12-31'
    END ymd
FROM t1;

写入后结果

4、第二天数据写入

数据查询

WITH
    t1 AS(
        SELECT
            order_id,
            STR_TO_MAP(CONCAT_WS(',',COLLECT_SET(CONCAT(order_status,'=',operation_time))),',','=')m
        FROM ec.ods_order_status
        WHERE ymd='2020-01-02'
        GROUP BY order_id
    ),
    new AS(
    SELECT
        order_id,
        m['start'] start_time,
        m['end'] end_time,
        CASE
            WHEN m['end'] IS NOT NULL THEN '2020-01-02'
            ELSE '9999-12-31'
        END ymd
    FROM
        t1
    ),
    old AS (SELECT * FROM ec.dwd_order WHERE ymd='9999-12-31')
SELECT
    NVL(new.order_id,old.order_id) order_id,
    NVL(new.start_time,old.start_time) start_time,
    NVL(new.end_time,old.end_time) end_time,
    NVL(new.ymd,old.ymd) ymd
FROM new
FULL OUTER JOIN old
ON new.order_id=old.order_id;

查询结果

数据写入

注意:语法要求WITH写在INSERT前面

WITH
    t1 AS(
        SELECT
            order_id,
            STR_TO_MAP(CONCAT_WS(',',COLLECT_SET(CONCAT(order_status,'=',operation_time))),',','=')m
        FROM ec.ods_order_status
        WHERE ymd='2020-01-02'
        GROUP BY order_id
    ),
    new AS(
    SELECT
        order_id,
        m['start'] start_time,
        m['end'] end_time,
        CASE
            WHEN m['end'] IS NOT NULL THEN '2020-01-02'
            ELSE '9999-12-31'
        END ymd
    FROM
        t1
    ),
    old AS (SELECT * FROM ec.dwd_order WHERE ymd='9999-12-31')
INSERT OVERWRITE TABLE ec.dwd_order PARTITION(ymd)
SELECT
    NVL(new.order_id,old.order_id) order_id,
    NVL(new.start_time,old.start_time) start_time,
    NVL(new.end_time,old.end_time) end_time,
    NVL(new.ymd,old.ymd) ymd
FROM new
FULL OUTER JOIN old
ON new.order_id=old.order_id;

写入后结果

补充

上面的订单状态比较简单,这个全一点,SQL的思路是一样的

以上是关于图解HIVE累积型快照事实表的主要内容,如果未能解决你的问题,请参考以下文章

Greenplum 实时数据仓库实践——事实表技术

从同一个累积事实表中分离和独立的计数

数仓表概念

数据仓库建模-维度建模

AdventureworksDW 的 FactInternetSales 是累积快照表吗?

数仓第三篇:详解维度建模之事实表!