pytorch学习 | 提取参数及自定义初始化

Posted 人工智能博士

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch学习 | 提取参数及自定义初始化相关的知识,希望对你有一定的参考价值。

点上方人工智能算法与Python大数据获取更多干货

在右上方 ··· 设为星标 ★,第一时间获取资源

仅做学术分享,如有侵权,联系删除

转载于 :作者 | 李元芳@知乎 

来源 | https://zhuanlan.zhihu.com/p/52297770 

编辑 | 极市平台

有时候提取出的层结构并不够,还需要对里面的参数进行初始化,那么如何提取出网络的参数并对其初始化呢?

首先 nn.Module 里面有两个特别重要的关于参数的属性,分别是 named_parameters()和 parameters()。named_parameters() 是给出网络层的名字和参数的迭代器,parameters()会给出一个网络的全部参数的选代器。

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
import torch.autograd.variable as variable

class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN,self).__init__()  #b,3,32,32
        layer1=nn.Sequential()
        layer1.add_module('conv1',nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3,stride=1,padding=1))
        #b,32,32,32
        layer1.add_module('relu1',nn.ReLU(True))
        layer1.add_module('pool1',nn.MaxPool2d(2,2))
        #b,32,16,16
        self.layer1=layer1
        layer2=nn.Sequential()
        layer1.add_module('conv2',nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3,stride=1,padding=1))
        #b,64,16,16
        layer2.add_module('relu2',nn.ReLU(True))
        layer2.add_module('pool2',nn.MaxPool2d(2,2))
        #b,64,8,8
        self.layer2=layer2

        layer3=nn.Sequential()
        layer3.add_module('conv3', nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3 ,stride=1, padding = 1)) 
        #b,128,8,8
        layer3.add_module('relu3', nn.ReLU(True))
        layer3.add_module('poo13', nn.MaxPool2d(2, 2))#b,128,4,4
        self.layer3=layer3

        layer4 =nn.Sequential()
        layer4.add_module('fc1',nn.Linear(in_features=2048, out_features=512 ))
        layer4.add_module('fc_relu1', nn.ReLU(True))
        layer4.add_module('fc2 ', nn.Linear(in_features=512, out_features=64 ))
        layer4.add_module('fc_relu2', nn.ReLU(True))
        layer4.add_module('fc3', nn.Linear(64, 10))
        self.layer4 = layer4

    def forward(self,x):
        conv1=self.layer1(x)
        conv2=self.layer2(conv1)
        conv3=self.layer3(conv2)
        fc_input=conv3.view(conv3.size(0),-1)
        fc_output=self.layer4(fc_input)
    return fc_output
model=SimpleCNN()
for param in model.named_parameters():
    print(param[0])

可以得到每一层参数的名字,输出为

如何对权重做初始化呢 ? 非常简单,因为权重是一个 Variable ,所以只需要取出其中的 data 属性,然后对它进行所需要的处理就可以了。

for m in model.modules():
    if isinstance(m,nn.Conv2d):
        init.normal(m.weight.data) #通过正态分布填充张量
        init.xavier_normal(m.weight.data) 
#xavier均匀分布的方法来init,来自2010年的论文“Understanding the difficulty of training deep feedforward neural networks”
        init.kaiming_normal(m.weight.data) 
#来自2015年何凯明的论文“Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification”
        m.bias.data.fill_(0)
    elif isinstance(m,nn.Linear):
        m.weight.data.normal_()

通过上面的操作,对将卷积层中使用 PyTorch 里面提供的方法的权重进行初始化,这样就能够使用任意我们想使用的初始化,甚至我们可以自己定义初始化方法并对权重进行初始化 。

更多初始化方法参考【torch.nn.init】https://pytorch-cn.readthedocs.io/zh/latest/package_references/nn_init/

---------♥---------

声明:本内容来源网络,版权属于原作者

图片来源网络,不代表本公众号立场。如有侵权,联系删除

AI博士私人微信,还有少量空位

如何画出漂亮的深度学习模型图?

如何画出漂亮的神经网络图?

一文读懂深度学习中的各种卷积

点个在看支持一下吧

以上是关于pytorch学习 | 提取参数及自定义初始化的主要内容,如果未能解决你的问题,请参考以下文章

PyTorch:Embedding初始化及自定义

pytorch实现网络的保存和提取

PyTorch学习系列——参数_初始化

Pytorch学习笔记——Sequential类参数管理与GPU

pytorch-卷积基本网络结构-提取网络参数-初始化网络参数

深度学习——基础(基于Pytorch代码)