Python人脸识别微笑检测
Posted 机智的橙子
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python人脸识别微笑检测相关的知识,希望对你有一定的参考价值。
文章目录
一.实验准备
环境搭建
pip install tensorflow==1.2.0
pip install keras==2.0.6
pip install dlib==19.6.1
pip install h5py==2.10
如果是新建虚拟环境,还需安装以下包
pip install opencv_python==4.1.2.30
pip install pillow
pip install matplotlib
pip install h5py
使用genki-4k数据集
可从此处下载:https://inc.ucsd.edu/mplab/wordpress/index.html%3Fp=398.html
二.图片预处理
打开数据集
我们需要将人脸检测出来并对图片进行裁剪
代码如下:
import dlib # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2 # 图像处理的库OpenCv
import os
# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('D:\\\\shape_predictor_68_face_landmarks.dat')
# 读取图像的路径
path_read = "C:\\\\Users\\\\28205\\\\Documents\\\\Tencent Files\\\\2820535964\\\\FileRecv\\\\genki4k\\\\files"
num=0
for file_name in os.listdir(path_read):
#aa是图片的全路径
aa=(path_read +"/"+file_name)
#读入的图片的路径中含非英文
img=cv2.imdecode(np.fromfile(aa, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
#获取图片的宽高
img_shape=img.shape
img_height=img_shape[0]
img_width=img_shape[1]
# 用来存储生成的单张人脸的路径
path_save="C:\\\\Users\\\\28205\\\\Documents\\\\Tencent Files\\\\2820535964\\\\FileRecv\\\\genki4k\\\\files1"
# dlib检测
dets = detector(img,1)
print("人脸数:", len(dets))
for k, d in enumerate(dets):
if len(dets)>1:
continue
num=num+1
# 计算矩形大小
# (x,y), (宽度width, 高度height)
pos_start = tuple([d.left(), d.top()])
pos_end = tuple([d.right(), d.bottom()])
# 计算矩形框大小
height = d.bottom()-d.top()
width = d.right()-d.left()
# 根据人脸大小生成空的图像
img_blank = np.zeros((height, width, 3), np.uint8)
for i in range(height):
if d.top()+i>=img_height:# 防止越界
continue
for j in range(width):
if d.left()+j>=img_width:# 防止越界
continue
img_blank[i][j] = img[d.top()+i][d.left()+j]
img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC)
cv2.imencode('.jpg', img_blank)[1].tofile(path_save+"\\\\"+"file"+str(num)+".jpg") # 正确方法
运行效果如下:
共识别出3878张图片。
某些图片没有识别出人脸,所以没有裁剪保存,可以自行添加图片补充。
三.划分数据集
代码:
import os, shutil
# 原始数据集路径
original_dataset_dir = 'C:\\\\Users\\\\28205\\\\Documents\\\\Tencent Files\\\\2820535964\\\\FileRecv\\\\genki4k\\\\files1'
# 新的数据集
base_dir = 'C:\\\\Users\\\\28205\\\\Documents\\\\Tencent Files\\\\2820535964\\\\FileRecv\\\\genki4k\\\\files2'
os.mkdir(base_dir)
# 训练图像、验证图像、测试图像的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
train_cats_dir = os.path.join(train_dir, 'smile')
os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'unsmile')
os.mkdir(train_dogs_dir)
validation_cats_dir = os.path.join(validation_dir, 'smile')
os.mkdir(validation_cats_dir)
validation_dogs_dir = os.path.join(validation_dir, 'unsmile')
os.mkdir(validation_dogs_dir)
test_cats_dir = os.path.join(test_dir, 'smile')
os.mkdir(test_cats_dir)
test_dogs_dir = os.path.join(test_dir, 'unsmile')
os.mkdir(test_dogs_dir)
# 复制1000张笑脸图片到train_c_dir
fnames = ['file.jpg'.format(i) for i in range(1,900)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['file.jpg'.format(i) for i in range(900, 1350)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 cat images to test_cats_dir
fnames = ['file.jpg'.format(i) for i in range(1350, 1800)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['file.jpg'.format(i) for i in range(2127,3000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 dog images to validation_dogs_dir
fnames = ['file.jpg'.format(i) for i in range(3000,3878)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 dog images to test_dogs_dir
fnames = ['file.jpg'.format(i) for i in range(3000,3878)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst)
运行效果如下:
四.CNN提取人脸识别笑脸和非笑脸
1.创建模型
代码:
#创建模型
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()#查看
运行效果:
2.归一化处理
代码:
#归一化
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen=ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# 目标文件目录
train_dir,
#所有图片的size必须是150x150
target_size=(150, 150),
batch_size=20,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch)
break
#'smile': 0, 'unsmile': 1
3.数据增强
代码:
#数据增强
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
#数据增强后图片变化
import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_smile_dir, fname) for fname in os.listdir(train_smile_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
运行效果:
4.创建网络
代码:
#创建网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
#归一化处理
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# This is the target directory
train_dir,
# All images will be resized to 150x150
target_size=(150, 150),
batch_size=32,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=60,
validation_data=validation_generator,
validation_steps=50)
model.save('smileAndUnsmile1.h5')
#数据增强过后的训练集与验证集的精确度与损失度的图形
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
运行结果:
速度较慢,要等很久
5.单张图片测试
代码:
# 单张图片进行判断 是笑脸还是非笑脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
#加载模型
model = load_model('smileAndUnsmile1.h5')
#本地图片路径
img_path='test.jpg'
img = image.load_img(img_path, target_size=(以上是关于Python人脸识别微笑检测的主要内容,如果未能解决你的问题,请参考以下文章
Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测