R语言生成仿真的3D高斯簇数据集使用scale函数进行数据缩放并使用KMeans进行聚类分析数据反向缩放并比较聚类生成的中心和实际数据的中心的差异预测新的数据所属的聚类簇
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言生成仿真的3D高斯簇数据集使用scale函数进行数据缩放并使用KMeans进行聚类分析数据反向缩放并比较聚类生成的中心和实际数据的中心的差异预测新的数据所属的聚类簇相关的知识,希望对你有一定的参考价值。
R语言生成仿真的3D高斯簇数据集、使用scale函数进行数据缩放、并使用KMeans进行聚类分析、数据反向缩放并比较聚类生成的中心和实际数据的中心的差异、预测新的数据所属的聚类簇
目录
以上是关于R语言生成仿真的3D高斯簇数据集使用scale函数进行数据缩放并使用KMeans进行聚类分析数据反向缩放并比较聚类生成的中心和实际数据的中心的差异预测新的数据所属的聚类簇的主要内容,如果未能解决你的问题,请参考以下文章
R语言生成螺旋形(spirals)仿真数据实战:螺旋线型线性不可分数据集螺旋线型不可分数据集可视化为散点图中的每个数据点添加类标签信息
R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)构建仿真数据集控制所有其它预测变量进而评估单个预测因子对结果概率的影响
R语言使用scatterplot3d包的scatterplot3d函数可视化3D散点图(3D scatter plots)
R语言e1071包中的支持向量机:仿真数据(螺旋线性不可分数据集)简单线性核的支持向量机SVM(模型在测试集上的表现可视化模型预测的结果添加超平面区域与原始数据标签进行对比分析)如何改进核函数