[leetcode-625-Minimum Factorization]
Posted hellowOOOrld
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[leetcode-625-Minimum Factorization]相关的知识,希望对你有一定的参考价值。
Given a positive integer a
, find the smallest positive integer b
whose multiplication of each digit equals to a
.
If there is no answer or the answer is not fit in 32-bit signed integer, then return 0.
Example 1
Input:
48Output:
68
Example 2
Input:
15Output:
35
思路:
For a given n, following are the two cases to be considered.
Case 1: n < 10 When n is smaller than n, the output is always n+10. For example for n = 7, output is 17. For n = 9, output is 19.
Case 2: n >= 10 Find all factors of n which are between 2 and 9 (both inclusive). The idea is to start searching from 9 so that the number of digits in result are minimized. For example 9 is preferred over 33 and 8 is preferred over 24.
Store all found factors in an array. The array would contain digits in non-increasing order, so finally print the array in reverse order.
Following is the implementation of above concept.
int smallestFactorization(int a) { if(a<10)return a; vector<int> tmp; for(int i=9;i>1;i--) { while(a%i==0) { a = a/ i; tmp.push_back(i); } } if(a>10)return 0; long long ret =0; for(int i =tmp.size()-1;i>=0;i--) { ret = ret*10+tmp[i]; if(ret>2147483647) return 0; } return ret; }
参考:
http://www.geeksforgeeks.org/find-smallest-number-whose-digits-multiply-given-number-n/
以上是关于[leetcode-625-Minimum Factorization]的主要内容,如果未能解决你的问题,请参考以下文章
[leetcode-625-Minimum Factorization]