yolov3 MNN框架部署C++版

Posted 刘大壮_

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了yolov3 MNN框架部署C++版相关的知识,希望对你有一定的参考价值。

一、模型转换:

1.训练的模型格式:https://github.com/AlexeyAB/darknet/ darknet训练出来的weights

2.将训练时的.cfg文件和训练后得到的.weights文件根据https://github.com/Tianxiaomo/pytorch-YOLOv4 中demo_darknet2onnx文件转onnx

3.转成MNN

二、onnx转换成MN

mnn编译:

https://github.com/alibaba/MNN.git

建议版本:

https://github.com/alibaba/MNN/archive/1.1.2.tar.gz

  • 编译:
#mnn编译
mkdir build && cd build
cmake -DMNN_BUILD_CONVERTER=ON  -D MNN_OPENCL=ON -D MNN_USE_SYSTEM_LIB=ON -D MNN_SEP_BUILD=OFF ..  #生成转换工具   后边三个选项是编译GPU版本
make -j8
make install
  • onnx→mnn:
#进入build目录
cd build
#模型zhuanhua
./MNNConvert -f ONNX --modelFile yolov3.onnx --MNNModel yolov3.mnn --bizCode MNN

当模型过大时:A protocol message was rejected because it was too big (more than 67108864 bytes)会报这个错误

解决方式:/tools/converter/source/onnx/OnnxUtils.cpp文件中添加:

google::protobuf::io::IstreamInputStream input(&fs);
google::protobuf::io::CodedInputStream codedstr(&input);
#加下面这一行,添加完重新编译就行
codedstr.SetTotalBytesLimit(512 * 1024 * 1024, 64 * 1024 * 1024);

三、模型推理

只有这一个文件,CMakeList中添加MNN和opencv的环境即可

后处理过程:对模型输出的格式进行解析。"boxes" -- [batch, num, 1, 4] ; "confs" -- [batch, num, num_classes]

工程地址: https://github.com/liujiaxing7/MNN-yolov3  支持CPU和GPU (若有帮助,可以star支持一下哟~)

./yolo.out path.mnn images.txt classes.txt

四、效果

以上是关于yolov3 MNN框架部署C++版的主要内容,如果未能解决你的问题,请参考以下文章

MNN源码阅读--Tensor数据结构解析和运行示例

阿里开源!轻量级深度学习端侧推理引擎 MNN

windows MNN 的使用流程(Python版)

[C++][ubuntu]MNN在ubuntu18.04源码编译流程

趟坑:WIN7 + VS2015 编译 阿里MNN框架

《C++ Primer中文版(第5版)》学习笔记与习题完整发布!