经验分享寒武纪 pytorch-mlu 添加逐层算子方法

Posted 极智视界

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了经验分享寒武纪 pytorch-mlu 添加逐层算子方法相关的知识,希望对你有一定的参考价值。

欢迎关注我的公众号 [极智视界],回复001获取Google编程规范

O_o>_<o_OO_o~_~o_O

  本教程分享了在寒武纪设备上 pytorch-mlu 中添加逐层算子的方法。

  pytorch-mlu 逐层模式中算子间数据传递和存储的基本单元是 tensor。pytorch-mlu 根据 tensor 中的 device 属性值将算子分发到不同设备。以 abs() 算子为例,在 dispatch 阶段会根据 input_tensor 的设备属性值将算子调用分发到具体设备,逻辑如下图所示:

  Catch 通过注册添加 MLU 算子方式与 pytorch 源码解耦,下面介绍在 Catch 中添加 MLU 算子的具体步骤。

1、注册算子

  在 catch/torch_mlu/csrc/generated/aten_mlu_type_default.cpp 中注册算子:

.op(torch::RegisterOperators::options().schema("aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor")  // NOLINT 

  .impl_unboxedOnlyKernel<at::Tensor(const at::Tensor &, const at::Tensor &, at::Scalar), &AtenMluType::add>(at::TensorTypeId::MLUTensorId)
  
  aliasAnalysis(c10::AliasAnalysisKind::FROM_SCHEMA))

2、算子分发

  AtenMluType 和 AtenMluCustomType 是 Catch 模块中算子的入口。AtenMluType 类主要包含框架中的标准算子;而 AtenMluCustomType 类包含客制化的算子。根据算子属性选择在 AtenMluType 还是 AtenMluCustomType 中添加相应算子声明和实现。

  • 标准算子分发
    catch/torch_mlu/csrc/aten/aten_mlu_type.hcatch/torch_mlu/csrc/aten/aten_mlu_type.cpp 中添加算子声明和实现:
aten_mlu_type.h
static at::Tensor add(const at::Tensor& self, const at::Tensor& other, at::Scalar alpha);
aten_mlu_type.cpp
at::Tensor AtenMluType::add(const at::Tensor& self, const at::Tensor& other, at::Scalar alpha)
  return OP_DISPATCH(add, self, other, alpha);

  • 客制化算子分发

对于 MLU 特有算子,在 catch/torch_mlu/csrc/aten/aten_mlu_type.hcatch/torch_mlu/csrc/aten/aten_mlu_custom_type.cpp 中添加算子申明和实现:

aten_mlu_type.h
static at::Tensor linear(const at::Tensor& input,
                         const at::Tensor& weight,
                         const at::Tensor& bias,
                         const at::Tensor& q_scale,
                         const at::Tensor& q_mode);
aten_mlu_custom_type.cpp
at::Tensor AtenMluCustomType::linear(const at::Tensor& input,
                                     const at::Tensor& weight,
                                     const at::Tensor& bias,
                                     const at::Tensor& q_scale,
                                     const at::Tensor& q_mode)
    return OP_DISPATCH(linear, input, weight, bias, q_scale, q_mode);


3、修改 OpMethods 基类

  从 AtenMluType 和 AtenMluCustomType 中都会通过 OpMethods 下发到推理算子或训练算子。在 catch/torch_mlu/csrc/aten/operators/op_methods.hcatch/torch_mlu/csrc/aten/operators/op_methods.cpp 中添加算子申明和实现。OpMethods 中的实现部分为该算子的 CPU 实现。

op_methods.h
virtual at::Tensor add(const at::Tensor& self, const at::Tensor& other, at::Scalar alpha);
op_methods.cpp
at::Tensor OpMethods::add(const at::Tensor& self,
                          const at::Tensor& other,
                          at::Scalar alpha)
   auto input_cpu = self.cpu();
   auto other_cpu = other.cpu();
   auto output = at::add(input_cpu, other_cpu, alpha);
   return output.to(at::Device(at::Device::Type::MLU));


4、下发算子

catch/torch_mlu/csrc/aten/operators/cnml_ops.hcatch/torch_mlu/csrc/aten/operators/cnml_ops.cpp 中添加推理算子申明和实现。

cnml_ops.h
at::Tensor add(const at::Tensor& self, const at::Tensor& other, at::Scalar alpha);
cnml_ops.cpp
at::Tensor CnmlOps::add(const at::Tensor& self, const at::Tensor& other, at::Scalar alpha)
  CNML_DISPATCH(add, cnml_add, self, other, alpha);  // CNML_DISPATCH 宏第一个参数是该接口名,第二个参数是wrapper个名字,其余


5、添加 wrapper

wrapper 是对算子 kernel 的封装,每个算子对应一个 wrapper。这里以 add 算子为例,添加 wrapper 如下所示:

cnml_kernel.h
at::Tensor cnml_add(const at::Tensor& input, const at::Tensor& other, at::Scalar alpha);
add.cpp
at::Tensor cnml_add(const at::Tensor& input, const at::Tensor& other, at::Scalar alpha_scalar)
  TORCH_CHECK(input.dim() >= 0 || other.dim() >= 0, "dimension not support");
  at::Tensor input_ = input;
  at::Tensor other_ = other;
  auto alpha_data = alpha_scalar.to<scalar_t>();
  if(alpha_data != 1)
    // scale_t
    other_ = cnml::ops::cnml_scale(other_, alpha_data, 0);
  
  if(other_.dim() < 1 && other_.device().type() == c10::DeviceType::CPU)
    auto other_scalar = other_.item();
    return cnml_add_internal(input_, other_scalar);   // 调用kernel
  
  if(input_.dim() < 1 && input_.device().type() == c10::DeviceType::CPU)
    auto input_scalar = input_.item();
    return cnml_add_internal(other_, input_scalar);   // 调用 kernel
  
  
  bool broadcast = input_.sizes() != other_.sizes();
  if(broadcast)
    auto broadcast_size = at::infer_size(input.sizes(), other.sizes());
    at::Tensor broadcast1 = cnml::ops::cnml_expand(input_, broadcast_size, false);
    at::Tensor broadcast2 = cnml::ops::cnml_expand(other_, broadcast_size, false);
    return cnml_add_internal(broadcast1, broadcast2);  // 调用 kernel
  else
    return cnml_add_internal(input_, other_);  //调用 kernel
  
  return cnml_add_internal(input_, other_);   //调用 kernel


6、添加 wrapper

Wrapper 中通过调用 kernel 实现算子功能。示例中调用的是 cnml_add_internal。算子的具体实现主要通过调用 CNML 库的接口来完成,下面是 CNML 库的逻辑:

  kernel 实现就是按照上述编程逻辑调用 CNML 库接口完成的,在 catch/torch_mlu/csrc/aten/operators/cnml/internal/cnml_internal.hcatch/torch_mlu/csrc/aten/operators/cnml/internal/add_internal/cpp 中添加 kernel 函数的声明和实现。

cnml_internal.h
at::Tensor cnml_add_internal(const at::Tensor& input1, const at::Tensor& input2);
add_internal.cpp
at::Tensor cnml_add_internal(const at::Tensor& input1, const at::Tensor& input2)
  auto output = at::native::empty_like(input1);
  // prepare input cnml tensor
  auto* input1_impl = getMluTensorImpl(input1);  // 获取MluTensorImpl
  auto input1_cnml = input1_impl->CreateCnmlTensor(
       CNML_TENSOR, toCnmlDataType(input1.dtype()));  // 类型自适应:toCnmlDataType()
       
  auto* input2_impl = getMluTensorImpl(input2);
  auto input2_cnml = input2_impl->CreateCnmlTensor(
      CNML_TENSOR, toCnmlDataType(input2.dtype()));
      
  // prepare output cnml tensor
  auto* output_impl = getMluTensorImpl(output);
  auto output_cnml = output_impl->CreateCnmlTensor(
      CNML_TENSOR, toCnmlDataType(output.dtype()));
      
  // End the execution flow if not MLU device
  CHECK_MLU_DEVICE(output);
  
  // setup operator
  cnmlBaseOp_t add_op;
  TORCH_CNML_CHECK(cnmlCreateAddOp(&add_op, input1_cnml, input2_cnml, output_cnml));
  
  // return to JIT if running mode is fuse
  CHEXK_RETURN_TO_FUSE(add_op, output);
  
  // compile op
  TORCH_CNML_CHECK(cnmlCompileBaseOp(add_op, GET_CORE_VERSION, GET_CORE_NUMBER));
  
  auto queue = getCurQueue();
  TORCH_CNML_CHECK(cnmlComputeAddOpForward_V4(add_op,
                                              NULL,
                                              input1_impl->raw_mutable_data(),
                                              NULL,
                                              input2_impl->raw_mutable_data(),
                                              NULL,
                                              output_impl->raw_mutable_data(),
                                              queue,
                                              NULL));
   syncQueue(queue);
   TORCH_CNML_CHECK(cnmlDestroyBaseOp(&add_op));
   
  return output;

  • 对 MLU 不支持算子的处理

  对于 MLU 暂不支持的操作,输入数据将会拷贝到 CPU 上,然后调用 CPU 相关操作,使其在 CPU 上运行,最后再将输出结果拷会到 MLU 上。具体实现,可以查询 op_methods.cp,该文件在 catch/torch_mlu/csrc/aten/operators/ 目录下。

op_methods.cpp
at::Tensor OpMethods::add(const at::Tensor& self,
                          const at::Tensor& other,
                          at::Scalar alpha)
  auto input_cpu = self.cpu();
  auto other_cpu = other.cpu();
  auto output = at::add(input_cpu, other_cpu, alpha);
  return output.to(at::Device(at::Device::Type::MLU));

  • 对于新增的算子在执行过程中抛出异常时,如果 CPU 上没有对应的算子操作,那么该操作无法切换到 CPU 上运行;
  • Wrapper一般以 cnml_算子名命名,kernel一般以cnml_算子名_internal命名

7、算子测试

  使用基于 python 的 unittest 模块编写算子单元测试。测试时需提供相同的参数和输入数据,分别在 MLU 和 CPU 上执行算子,对比两者的输出结果。MLU 和 CPU 计算结果可能会有差异,一般情况下两者的相对误差在 2% 以内均是可以接受的。

def test_add(self):
  # "Tensor + Tensor" mode testing
  for shape1, shape2 in [((1,3,224,224),(1,3,224,224)),((2,30,80),(2,30,80)),((3,20),(3,20)),((10),(10))]:
    input1_cpu = torch.rand(shape1, dtype=torch.float)
    input2_cpu = torch.rand(shape2, dtype=torch.float)
    input1_mlu = input1_cpu.to(xm.mlu_device())
    input2_mlu = input2_cpu.to(xm.mlu_device())
    # 在 CPU 上计算
    output_cpu = input1_cpu + input2_cpu
    # 在 MLU 上计算
    output_mlu = input1_mlu + input2_mlu
    # 计算 MLU 的误差,并确保相对误差在 2% 以内
    self.assertTensorsEqual(output_cpu, output_mlu.cpu(), 0.02, use_MSE=True)

  以上分享了在寒武纪设备 pytorch-mlu 中添加逐层算子的方法,并以 add() 算子为例进行了示例编写,希望我的分享会对你的学习有一点帮助。


 【公众号传送】

《【经验分享】寒武纪 pytorch-mlu 添加逐层算子方法》


扫描下方二维码即可关注我的微信公众号【极智视界】,获取更多AI经验分享,让我们用极致+极客的心态来迎接AI !

以上是关于经验分享寒武纪 pytorch-mlu 添加逐层算子方法的主要内容,如果未能解决你的问题,请参考以下文章

经验分享ubuntu 安装寒武纪MLU-270 SDK教程

经验分享让caffe-cudnn8支持yolov3

极智AI | 算能SDK架构

算子算力计算

寒武纪加速推理与训练智能卡分析

一年两款新品 寒武纪的研发效率为何如此高?