二叉搜索树的插入与删除(C语言)

Posted Wecccccccc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉搜索树的插入与删除(C语言)相关的知识,希望对你有一定的参考价值。

代码如下:

BinTree Insert( BinTree BST, ElementType X )
{
    if( !BST ){ /* 若原树为空,生成并返回一个结点的二叉搜索树 */
        BST = (BinTree)malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = BST->Right = NULL;
    }
    else { /* 开始找要插入元素的位置 */
        if( X < BST->Data )
            BST->Left = Insert( BST->Left, X );   /*递归插入左子树*/
        else  if( X > BST->Data )
            BST->Right = Insert( BST->Right, X ); /*递归插入右子树*/
        /* else X已经存在,什么都不做 */
    }
    return BST;
}

BinTree Delete( BinTree BST, ElementType X ) 
{ 
    Position Tmp; 

    if( !BST ) 
        printf("要删除的元素未找到"); 
    else {
        if( X < BST->Data ) 
            BST->Left = Delete( BST->Left, X );   /* 从左子树递归删除 */
        else if( X > BST->Data ) 
            BST->Right = Delete( BST->Right, X ); /* 从右子树递归删除 */
        else { /* BST就是要删除的结点 */
            /* 如果被删除结点有左右两个子结点 */ 
            if( BST->Left && BST->Right ) {
                /* 从右子树中找最小的元素填充删除结点 */
                Tmp = FindMin( BST->Right );
                BST->Data = Tmp->Data;
                /* 从右子树中删除最小元素 */
                BST->Right = Delete( BST->Right, BST->Data );
            }
            else { /* 被删除结点有一个或无子结点 */
                Tmp = BST; 
                if( !BST->Left )       /* 只有右孩子或无子结点 */
                    BST = BST->Right; 
                else                   /* 只有左孩子 */
                    BST = BST->Left;
                free( Tmp );
            }
        }
    }
    return BST;
}

以上是关于二叉搜索树的插入与删除(C语言)的主要内容,如果未能解决你的问题,请参考以下文章

平衡二叉树的删除

C++-二叉搜索树的查找&插入&删除-二叉搜索树代码实现-二叉搜索树性能分析及解决方案

AVL树的插入与删除

数据结构与算法 通俗易懂讲解 二叉搜索树插入删除

二叉搜索树的插入,删除,和中序遍历

红黑树的插入与删除