OpenCV-获取图像中直线上的数据

Posted 翟天保Steven

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV-获取图像中直线上的数据相关的知识,希望对你有一定的参考价值。

作者:翟天保Steven
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处

需求说明

       在对图像进行处理时,经常会有这类需求:客户想要提取出图像中某条直线或者ROI区域内的感兴趣数据,进行重点关注。该需求在图像检测领域尤其常见。ROI区域一般搭配Rect即可完成提取,直线数据的提取没有现成的函数,需要自行实现。

       当直线为纵向或者横向时,比较简单,只需要从起点到终点提取该行或者列的数据即可;但是直线若为斜向的,则需要从起点出发,向终点方向逐个像素提取。大家都知道,图像是由许多像素组成,而斜向直线的数据提取路线并不一定就是标准的斜线,也可能是呈阶梯状的路线,而如何进行路线设计,就是本文所要展示的内容。

具体流程

       1)建立vector<pair<float,int>> result容器用于存放数据,设置初始化参数。其中,inImage是输入图像,start为起点,end为终点,点的类型为cv::Point。

vector<pair<float, int>> result;
int row = inImage.rows;
int col = inImage.cols;
int r1 = start.y;
int c1 = start.x;
int r2 = end.y;
int c2 = end.x;

       2)确定两点间距离dist,将起点到终点的横坐标差和纵坐标差进行勾股定理可得。所得距离可能为带小数的数据,然而像素的个数都为整数,所以进行四舍五入。除此之外,还要判断下距离,若距离为0,则只返回起点数据。

float dist = round(sqrt(pow(float(r2) - float(r1), 2.0) + pow(float(c2) - float(c1), 2.0)));
if (dist <= 0.00001f) {
	pair<float, int> temp;
	temp.first = inImage.at<float>(r1, c1);
	temp.second = 0;
	result.push_back(temp);
	return result;
}

       3)确定横向纵向的步进间隔。

float slope_r = (float(r2) - float(r1)) / dist;
float slope_c = (float(c2) - float(c1)) / dist;

       4)建立Flag地图,用于标记已存储过的位置,避免同一数据二次放入。

cv::Mat Flag = cv::Mat::zeros(mask.size(), mask.type());

       5)开始存储数据。计数从0开始,若该点处于掩膜内,且Flag地图中没有标记,则进行存储。

int k = 0;
for (float i = 0; i <= dist; ++i) {
	// 若该点处于掩膜内,且未被Flag存储,则进行存储工作
	if ((mask.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) == 255)
		&& (Flag.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) == 0))
	{
		pair<float, int> temp;
		temp.first = inImage.at<float>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c)));
		temp.second = k;
		Flag.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) = 255;
		k++;
		result.push_back(temp);
	}
}

 

功能函数

/**
 * @brief GetOneDimLineData                 获取一维直线数据
 * @param inImage                           输入位相图
 * @param mask                              输入掩膜图
 * @param start                             起始点坐标
 * @param end                               终点坐标
 * @return                                  直线数据(数值&序号)
 */
vector<pair<float, int>> GetOneDimLineData(const cv::Mat inImage, cv::Mat mask, cv::Point start, cv::Point end)
{
	vector<pair<float, int>> result;
	int row = inImage.rows;
	int col = inImage.cols;
	int r1 = start.y;
	int c1 = start.x;
	int r2 = end.y;
	int c2 = end.x;
	// 确定两点间距离
	float dist = round(sqrt(pow(float(r2) - float(r1), 2.0) + pow(float(c2) - float(c1), 2.0)));
	if (dist <= 0.00001f) {
		pair<float, int> temp;
		temp.first = inImage.at<float>(r1, c1);
		temp.second = 0;
		result.push_back(temp);
		return result;
	}
	// 横向纵向的步进间隔
	float slope_r = (float(r2) - float(r1)) / dist;
	float slope_c = (float(c2) - float(c1)) / dist;
	// Flag地图,用于存储已放入的数据,避免同一数据二次放入
	cv::Mat Flag = cv::Mat::zeros(mask.size(), mask.type());
	// 数据量计数,从0开始
	int k = 0;
	for (float i = 0; i <= dist; ++i) {
		// 若该点处于掩膜内,且未被Flag存储,则进行存储工作
		if ((mask.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) == 255)
			&& (Flag.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) == 0))
		{
			pair<float, int> temp;
			temp.first = inImage.at<float>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c)));
			temp.second = k;
			Flag.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) = 255;
			k++;
			result.push_back(temp);
		}
	}
	return result;
}

C++测试代码

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>

using namespace std;
using namespace cv;

vector<pair<float, int>> GetOneDimLineData(const cv::Mat inImage, cv::Mat mask, cv::Point start, cv::Point end);

int main()
{
	Mat src(10,10,CV_32FC1,nan(""));
	for (int i = 3; i < 7; ++i)
	{
		for (int j = 3; j < 9; ++j)
		{
			src.at<float>(i, j) = rand() % 255;
		}
	}
	cv::Mat mask = cv::Mat::zeros(src.size(), CV_8UC1);
	mask.setTo(255, src == src);
	Point start = Point(2, 1);
	Point end = Point(8, 7);
	vector<pair<float, int>> test= GetOneDimLineData(src,mask, start, end);
	cout << "size:" << test.size() << endl;
	for (int i=0;i<test.size();++i)
	{
		cout << i << ":" << endl;
		cout << test[i].first << " " << test[i].second << endl;
	}
	return 0;
}

/**
 * @brief GetOneDimLineData                 获取一维直线数据
 * @param inImage                           输入位相图
 * @param mask                              输入掩膜图
 * @param start                             起始点坐标
 * @param end                               终点坐标
 * @return                                  直线数据(数值&序号)
 */
vector<pair<float, int>> GetOneDimLineData(const cv::Mat inImage, cv::Mat mask, cv::Point start, cv::Point end)
{
	vector<pair<float, int>> result;
	int row = inImage.rows;
	int col = inImage.cols;
	int r1 = start.y;
	int c1 = start.x;
	int r2 = end.y;
	int c2 = end.x;
	// 确定两点间距离
	float dist = round(sqrt(pow(float(r2) - float(r1), 2.0) + pow(float(c2) - float(c1), 2.0)));
	if (dist <= 0.00001f) {
		pair<float, int> temp;
		temp.first = inImage.at<float>(r1, c1);
		temp.second = 0;
		result.push_back(temp);
		return result;
	}
	// 横向纵向的步进间隔
	float slope_r = (float(r2) - float(r1)) / dist;
	float slope_c = (float(c2) - float(c1)) / dist;
	// Flag地图,用于存储已放入的数据,避免同一数据二次放入
	cv::Mat Flag = cv::Mat::zeros(mask.size(), mask.type());
	// 数据量计数,从0开始
	int k = 0;
	for (float i = 0; i <= dist; ++i) {
		// 若该点处于掩膜内,且未被Flag存储,则进行存储工作
		if ((mask.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) == 255)
			&& (Flag.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) == 0))
		{
			pair<float, int> temp;
			temp.first = inImage.at<float>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c)));
			temp.second = k;
			Flag.at<uchar>(int(r1) + int(round(i * slope_r)), int(c1) + int(round(i * slope_c))) = 255;
			k++;
			result.push_back(temp);
		}
	}
	return result;
}

测试效果

图1 初始化测试图像
图2 Flag地图
图3 结果打印

       不难看出,获取的数据为直线上数据。对于有一定斜度的直线,Flag地图可能呈现阶梯状步进路线,这也是正常的~

       如果函数有什么可以改进完善的地方,非常欢迎大家指出,一同进步何乐而不为呢~

       如果文章帮助到你了,可以点个赞让我知道,我会很快乐~加油!

以上是关于OpenCV-获取图像中直线上的数据的主要内容,如果未能解决你的问题,请参考以下文章

Opencv - 如何获取图像中存在的垂直线数(行数)

OpenCV-获取图像中圆线上的数据

OpenCV-获取图像中圆线上的数据

pyhton—opencv直线检测(HoughLines)找到最长的一条线

pyhton—opencv直线检测(HoughLines)找到最长的一条线

opencv利用hough概率变换拟合得到直线后,利用DDA算法得到直线上的像素点坐标