numpy中dot, multiply, *区别

Posted bitcarmanlee

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy中dot, multiply, *区别相关的知识,希望对你有一定的参考价值。

1.dot

首先看下dot源码中的注释部分

def dot(a, b, out=None):
    """
    dot(a, b, out=None)

    Dot product of two arrays. Specifically,

    - If both `a` and `b` are 1-D arrays, it is inner product of vectors
      (without complex conjugation).

    - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
      but using :func:`matmul` or ``a @ b`` is preferred.

    - If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply`
      and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred.

    - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
      the last axis of `a` and `b`.

    - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
      sum product over the last axis of `a` and the second-to-last axis of `b`::

        dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
 .....

关注一下最常用的两种情况:

If bothaandbare 1-D arrays, it is inner product of vectors
这就是两个向量dot,最后得到的两个向量的内积。

If bothaandbare 2-D arrays, it is matrix multiplication, but using :func:matmulor ``a @ b`` is preferred.
2-D arrays指的就是矩阵了。根据上面的解释不难看出,如果是两个矩阵dot,执行的就是矩阵相乘运算。

写段代码测试下

def demo2():
    a1 = np.arange(1, 5)
    a2 = a1[::-1]
    print(a1)
    print(a2)
    # 两个向量dot为内积
    print(a1.dot(a2))
    print(np.dot(a1, a2))
    print("\\n\\n")

    b1 = np.arange(1, 5).reshape(2, 2)
    b2 = np.arange(5, 9).reshape(2, 2)
    b3 = np.arange(9, 15).reshape(3, 2)
    print(b1)
    print(b2)
    print(b3)
    print(np.dot(b1, b2))
    # 会报错, 不满足矩阵相乘条件
    # print(np.dot(b1, b3))

代码执行的结果

[1 2 3 4]
[4 3 2 1]
20
20



[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 9 10]
 [11 12]
 [13 14]]
[[19 22]
 [43 50]]

2.multiply

同样的看一下multiply对应源码的注释部分。

def multiply(x1, x2, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ 
    """
    multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
    
    Multiply arguments element-wise.
    
    Parameters
    ----------
    x1, x2 : array_like
        Input arrays to be multiplied. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output).
    out : ndarray, None, or tuple of ndarray and None, optional
    .....

明白multiply方法的关键就是上面的一句注释:

Multiply arguments element-wise.

说人话就是:按对应的元素相乘。

def demo3():
    a1 = np.arange(1, 5)
    a2 = a1[::-1]
    print(a1)
    print(a2)
    print(np.multiply(a1, a2))
    print("\\n\\n")


    b1 = np.arange(1, 5).reshape(2, 2)
    b2 = np.arange(5, 9).reshape(2, 2)
    print(b1)
    print(b2)
    print(np.multiply(b1, b2))

运行得到结果

[1 2 3 4]
[4 3 2 1]
[4 6 6 4]



[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 5 12]
 [21 32]]

参考对应的代码,应该就很容易理解了。

3. *运算符

乘法运算符,最后得到的结果,跟multiply方法得到的结果是一样的。

def demo4():
    a1 = np.arange(1, 5)
    a2 = a1[::-1]
    print(a1)
    print(a2)
    print(a1 * a2)
    print("\\n\\n")

    b1 = np.arange(1, 5).reshape(2, 2)
    b2 = np.arange(5, 9).reshape(2, 2)
    print(b1)
    print(b2)
    print(b1 * b2)

最终结果

[1 2 3 4]
[4 3 2 1]
[4 6 6 4]



[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 5 12]
 [21 32]]

以上是关于numpy中dot, multiply, *区别的主要内容,如果未能解决你的问题,请参考以下文章

numpy里*与dot与multiply

python中np.multiply()np.dot()和星号(*)三种乘法运算的区别

np.dot 和 np.multiply 与 np.sum 在二进制交叉熵损失计算中的区别

numpy数组矩阵相乘的多种方式

numpy dot() 和 inner() 之间的区别

np.array()和np.mat()区别